Convert all remaining dos files to unix format.

This commit is contained in:
romuald@libnfc.org 2012-09-23 10:29:36 +00:00
parent 4ddf2de7b2
commit 1b6d022668
6 changed files with 1079 additions and 1079 deletions

View File

@ -1,487 +1,487 @@
/* crapto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#if !defined LOWMEM && defined __GNUC__
static uint8_t filterlut[1 << 20];
static void __attribute__((constructor)) fill_lut()
{
uint32_t i;
for(i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
}
#define filter(x) (filterlut[(x) & 0xfffff])
#endif
static void quicksort(uint32_t* const start, uint32_t* const stop)
{
uint32_t *it = start + 1, *rit = stop;
if(it > rit)
return;
while(it < rit)
if(*it <= *start)
++it;
else if(*rit > *start)
--rit;
else
*it ^= (*it ^= *rit, *rit ^= *it);
if(*rit >= *start)
--rit;
if(rit != start)
*rit ^= (*rit ^= *start, *start ^= *rit);
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
static inline uint32_t*
binsearch(uint32_t *start, uint32_t *stop)
{
uint32_t mid, val = *stop & 0xff000000;
while(start != stop)
if(start[mid = (stop - start) >> 1] > val)
stop = &start[mid];
else
start += mid + 1;
return start;
}
/** update_contribution
* helper, calculates the partial linear feedback contributions and puts in MSB
*/
static inline void
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
{
uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff);
}
/** extend_table
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
} else if(filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
*tbl-- = *(*end)--;
}
/** recover
* recursively narrow down the search space, 4 bits of keystream at a time
*/
static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in)
{
uint32_t *o, *e, i;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
return sl;
}
for(i = 0; i < 4 && rem--; i++) {
extend_table(o_head, &o_tail, (oks >>= 1) & 1,
LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, (eks >>= 1) & 1,
LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
if(e_head > e_tail)
return sl;
}
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
while(o_tail >= o_head && e_tail >= e_head)
if(((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
}
else if(*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
return sl;
}
/** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream
* additionally you can use the in parameter to specify the value
* that was fed into the lfsr at the time the keystream was generated
*/
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
{
struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist)
goto out;
statelist->odd = statelist->even = 0;
for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1))
*++odd_tail = i;
if(filter(i) == (eks & 1))
*++even_tail = i;
}
for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
out:
free(odd_head);
free(even_head);
return statelist;
}
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020};
static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states
* Variation mentioned in the paper. Somewhat optimized version
*/
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
{
struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16];
int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if(!sl)
return 0;
sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BIT(ks2, i ^ 24);
oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BIT(ks2, i ^ 24);
eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for(i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
*(tail = table) = i;
for(j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
if(tail < table)
continue;
for(j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for(j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for(; tail >= table; --tail) {
for(j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
if(filter(*tail) != oks[29 + j])
goto continue2;
}
for(j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
win ^= low;
for(j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if(filter(win) != eks[j])
goto continue2;
}
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:;
}
}
return statelist;
}
/** lfsr_rollback_bit
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint8_t ret;
s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23;
return ret;
}
/** lfsr_rollback_byte
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint8_t ret = 0;
for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
return ret;
}
/** lfsr_rollback_word
* Rollback the shift register in order to get previous states
*/
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
return ret;
}
/** nonce_distance
* x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
*/
static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to)
{
uint16_t x, i;
if(!dist) {
dist = malloc(2 << 16);
if(!dist)
return -1;
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
}
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
}
static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
/** lfsr_prefix_ks
*
* Is an exported helper function from the common prefix attack
* Described in the "dark side" paper. It returns an -1 terminated array
* of possible partial(21 bit) secret state.
* The required keystream(ks) needs to contain the keystream that was used to
* encrypt the NACK which is observed when varying only the 4 last bits of Nr
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
*/
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{
uint32_t c, entry, *candidates = malloc(4 << 21);
int i, size = (1 << 21) - 1;
if(!candidates)
return 0;
for(i = 0; i <= size; ++i)
candidates[i] = i;
for(c = 0; c < 8; ++c)
for(i = 0;i <= size; ++i) {
entry = candidates[i] ^ fastfwd[isodd][c];
if(filter(entry >> 1) != BIT(ks[c], isodd) ||
filter(entry) != BIT(ks[c], isodd + 2))
candidates[i--] = candidates[size--];
}
candidates[size + 1] = -1;
return candidates;
}
/** check_pfx_parity
* helper function which eliminates possible secret states using parity bits
*/
static struct Crypto1State*
check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State* sl)
{
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return sl + good;
}
/** lfsr_common_prefix
* Implentation of the common prefix attack.
* Requires the 29 bit constant prefix used as reader nonce (pfx)
* The reader response used (rr)
* The keystream used to encrypt the observed NACK's (ks)
* The parity bits (par)
* It returns a zero terminated list of possible cipher states after the
* tag nonce was fed in
*/
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) {
free(odd);
free(even);
free(statelist);
return 0;
}
for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = 0;
free(odd);
free(even);
return statelist;
}
/* crapto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#if !defined LOWMEM && defined __GNUC__
static uint8_t filterlut[1 << 20];
static void __attribute__((constructor)) fill_lut()
{
uint32_t i;
for(i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
}
#define filter(x) (filterlut[(x) & 0xfffff])
#endif
static void quicksort(uint32_t* const start, uint32_t* const stop)
{
uint32_t *it = start + 1, *rit = stop;
if(it > rit)
return;
while(it < rit)
if(*it <= *start)
++it;
else if(*rit > *start)
--rit;
else
*it ^= (*it ^= *rit, *rit ^= *it);
if(*rit >= *start)
--rit;
if(rit != start)
*rit ^= (*rit ^= *start, *start ^= *rit);
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
static inline uint32_t*
binsearch(uint32_t *start, uint32_t *stop)
{
uint32_t mid, val = *stop & 0xff000000;
while(start != stop)
if(start[mid = (stop - start) >> 1] > val)
stop = &start[mid];
else
start += mid + 1;
return start;
}
/** update_contribution
* helper, calculates the partial linear feedback contributions and puts in MSB
*/
static inline void
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
{
uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff);
}
/** extend_table
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
} else if(filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
*tbl-- = *(*end)--;
}
/** recover
* recursively narrow down the search space, 4 bits of keystream at a time
*/
static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in)
{
uint32_t *o, *e, i;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
return sl;
}
for(i = 0; i < 4 && rem--; i++) {
extend_table(o_head, &o_tail, (oks >>= 1) & 1,
LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, (eks >>= 1) & 1,
LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
if(e_head > e_tail)
return sl;
}
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
while(o_tail >= o_head && e_tail >= e_head)
if(((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
}
else if(*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
return sl;
}
/** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream
* additionally you can use the in parameter to specify the value
* that was fed into the lfsr at the time the keystream was generated
*/
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
{
struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist)
goto out;
statelist->odd = statelist->even = 0;
for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1))
*++odd_tail = i;
if(filter(i) == (eks & 1))
*++even_tail = i;
}
for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
out:
free(odd_head);
free(even_head);
return statelist;
}
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020};
static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states
* Variation mentioned in the paper. Somewhat optimized version
*/
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
{
struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16];
int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if(!sl)
return 0;
sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BIT(ks2, i ^ 24);
oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BIT(ks2, i ^ 24);
eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for(i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
*(tail = table) = i;
for(j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
if(tail < table)
continue;
for(j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for(j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for(; tail >= table; --tail) {
for(j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
if(filter(*tail) != oks[29 + j])
goto continue2;
}
for(j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
win ^= low;
for(j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if(filter(win) != eks[j])
goto continue2;
}
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:;
}
}
return statelist;
}
/** lfsr_rollback_bit
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint8_t ret;
s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23;
return ret;
}
/** lfsr_rollback_byte
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint8_t ret = 0;
for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
return ret;
}
/** lfsr_rollback_word
* Rollback the shift register in order to get previous states
*/
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
return ret;
}
/** nonce_distance
* x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
*/
static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to)
{
uint16_t x, i;
if(!dist) {
dist = malloc(2 << 16);
if(!dist)
return -1;
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
}
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
}
static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
/** lfsr_prefix_ks
*
* Is an exported helper function from the common prefix attack
* Described in the "dark side" paper. It returns an -1 terminated array
* of possible partial(21 bit) secret state.
* The required keystream(ks) needs to contain the keystream that was used to
* encrypt the NACK which is observed when varying only the 4 last bits of Nr
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
*/
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{
uint32_t c, entry, *candidates = malloc(4 << 21);
int i, size = (1 << 21) - 1;
if(!candidates)
return 0;
for(i = 0; i <= size; ++i)
candidates[i] = i;
for(c = 0; c < 8; ++c)
for(i = 0;i <= size; ++i) {
entry = candidates[i] ^ fastfwd[isodd][c];
if(filter(entry >> 1) != BIT(ks[c], isodd) ||
filter(entry) != BIT(ks[c], isodd + 2))
candidates[i--] = candidates[size--];
}
candidates[size + 1] = -1;
return candidates;
}
/** check_pfx_parity
* helper function which eliminates possible secret states using parity bits
*/
static struct Crypto1State*
check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State* sl)
{
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return sl + good;
}
/** lfsr_common_prefix
* Implentation of the common prefix attack.
* Requires the 29 bit constant prefix used as reader nonce (pfx)
* The reader response used (rr)
* The keystream used to encrypt the observed NACK's (ks)
* The parity bits (par)
* It returns a zero terminated list of possible cipher states after the
* tag nonce was fed in
*/
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) {
free(odd);
free(even);
free(statelist);
return 0;
}
for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = 0;
free(odd);
free(even);
return statelist;
}

View File

@ -1,120 +1,120 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Filename:
mfcuk_keyrecovery_darkside.h
Description:
MFCUK DarkSide Key Recovery specific typedefs and defines
Contact, bug-reports:
http://andreicostin.com/
mailto:zveriu@gmail.com
License:
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_keyrecovery_darkside.h
* @brief
*/
/*
VERSION HISTORY
--------------------------------------------------------------------------------
| Number : 0.1
| dd/mm/yyyy : 23/11/2009
| Author : zveriu@gmail.com, http://andreicostin.com
| Description: Moved bulk of defines and things from "mfcuk_keyrecovery_darkside.c"
--------------------------------------------------------------------------------
*/
/*
LICENSE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _MFCUK_KEYRECOVERY_DARKSIDE_H_
#define _MFCUK_KEYRECOVERY_DARKSIDE_H_
// Define package and executable related info
#define BUILD_NAME "Mifare Classic DarkSide Key Recovery Tool"
#define BUILD_VERSION "0.3"
#define BUILD_AUTHOR "Andrei Costin, zveriu@gmail.com, http://andreicostin.com"
// Define return statuses
#define MFCUK_SUCCESS 0x0
#define MFCUK_OK_KEY_RECOVERED (MFCUK_SUCCESS+1)
#define MFCUK_FAIL_AUTH (MFCUK_OK_KEY_RECOVERED+1)
#define MFCUK_FAIL_CRAPTO (MFCUK_FAIL_AUTH+1)
#define MFCUK_FAIL_TAGTYPE_INVALID (MFCUK_FAIL_CRAPTO+1)
#define MFCUK_FAIL_KEYTYPE_INVALID (MFCUK_FAIL_TAGTYPE_INVALID+1)
#define MFCUK_FAIL_BLOCK_INVALID (MFCUK_FAIL_KEYTYPE_INVALID+1)
#define MFCUK_FAIL_SECTOR_INVALID (MFCUK_FAIL_BLOCK_INVALID+1)
#define MFCUK_FAIL_COMM (MFCUK_FAIL_SECTOR_INVALID+1)
#define MFCUK_FAIL_MEMORY (MFCUK_FAIL_COMM+1)
// There are 4 bytes in ACBITS, use each byte as below
#define ACTIONS_KEY_A 0 // Specifies the byte index where actions for key A are stored
#define RESULTS_KEY_A 1 // Specifies the byte index where results for key A are stored
#define ACTIONS_KEY_B 2 // Specifies the byte index where actions for key B are stored
#define RESULTS_KEY_B 3 // Specifies the byte index where results for key B are stored
// The action/result byte can contain any combination of these
#define ACTIONS_VERIFY 0x1 // Specifies whether the key should be first verified
#define ACTIONS_RECOVER 0x2 // Specifies whether the key should be recovered. If a key has verify action and the key was verified, RESULTS_ byte will indicate that and recovery will not take place
#define ACTIONS_KEYSET 0x4 // Specifies whether the key was set from command line rather that should be loaded from the eventual -i/-I dump
// Implementation specific, since we are not 100% sure we can fix the tag nonce
// Suppose from 2^32, only MAX 2^16 tag nonces will appear given current SLEEP_ values
#define MAX_TAG_NONCES 65536
// Maximum possible states allocated and returned by lsfr_common_prefix(). Used this value in the looping
#define MAX_COMMON_PREFIX_STATES (1<<20)
// 10 ms, though {WPMCC09} claims 30 us is enough
#define SLEEP_AT_FIELD_OFF 10
// 50 ms, seems pretty good constant, though if you don't like it - make it even 3.1415..., we don't care
#define SLEEP_AFTER_FIELD_ON 50
// Since the 29 bits of {Nr} are constant, darkside varies only "last" (0xFFFFFF1F) 3 bits, thus we have 8 possible parity bits arrays
#define MFCUK_DARKSIDE_MAX_LEVELS 8
#define MFCUK_DARKSIDE_START_NR 0xDEADBEEF
#define MFCUK_DARKSIDE_START_AR 0xFACECAFE
typedef struct tag_nonce_entry
{
uint32_t tagNonce; // Tag nonce we target for fixation
byte_t spoofFlag; // No spoofing until we have a successful auth with this tagNonce. Once we have, we want to spoof to get the encrypted 0x5 value
uint32_t num_of_appearances; // For statistics, how many times this tag nonce appeared for the given SLEEP_ values
// STAGE1 data for "dark side" and lsfr_common_prefix()
uint32_t spoofNrPfx; // PARAM: used as pfx, calculated from (spoofNrEnc & 0xFFFFFF1F). BUG: weird way to denote "first 29 prefix bits" in "dark side" paper. Perhaps I see the world different
uint32_t spoofNrEnc; // {Nr} value which we will be using to make the tag respond with 4 bits
uint32_t spoofArEnc; // PARAM: used as rr
uint8_t spoofParBitsEnc; // parity bits we are trying to guess for the first time
uint8_t spoofNackEnc; // store here the encrypted NACK returned first time we match the parity bits
uint8_t spoofKs; // store here the keystream ks used for encryptying spoofNackEnc, specifically spoofKs = spoofNackEnc ^ 0x5
// STAGE2 data for "dark side" and lsfr_common_prefix()
int current_out_of_8; // starting from -1 until we find parity for chosen spoofNrEnc,spoofArEnc
uint8_t parBitsCrntCombination[MFCUK_DARKSIDE_MAX_LEVELS]; // Loops over 32 combinations of the last 5 parity bits which generated the 4 bit NACK in STAGE1
uint32_t nrEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // the 29 bits constant prefix, varying only 3 bits, thus 8 possible values
uint32_t arEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // the same reader response as spoofArEnc; redundant but... :)
uint8_t ks[MFCUK_DARKSIDE_MAX_LEVELS]; // PARAM: used as ks, obtained as (ks[i] = nackEnc[i] ^ 0x5)
uint8_t nackEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // store here the encrypted 4 bits values which tag responded
uint8_t parBits[MFCUK_DARKSIDE_MAX_LEVELS]; // store here the values based on spoofParBitsEnc, varying only last 5 bits
uint8_t parBitsArr[MFCUK_DARKSIDE_MAX_LEVELS][8]; // PARAM: used as par, contains value of parBits byte-bit values just splitted out one bit per byte thus second pair of braces [8]
} tag_nonce_entry_t;
#endif // _MFCUK_KEYRECOVERY_DARKSIDE_H_
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Filename:
mfcuk_keyrecovery_darkside.h
Description:
MFCUK DarkSide Key Recovery specific typedefs and defines
Contact, bug-reports:
http://andreicostin.com/
mailto:zveriu@gmail.com
License:
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_keyrecovery_darkside.h
* @brief
*/
/*
VERSION HISTORY
--------------------------------------------------------------------------------
| Number : 0.1
| dd/mm/yyyy : 23/11/2009
| Author : zveriu@gmail.com, http://andreicostin.com
| Description: Moved bulk of defines and things from "mfcuk_keyrecovery_darkside.c"
--------------------------------------------------------------------------------
*/
/*
LICENSE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _MFCUK_KEYRECOVERY_DARKSIDE_H_
#define _MFCUK_KEYRECOVERY_DARKSIDE_H_
// Define package and executable related info
#define BUILD_NAME "Mifare Classic DarkSide Key Recovery Tool"
#define BUILD_VERSION "0.3"
#define BUILD_AUTHOR "Andrei Costin, zveriu@gmail.com, http://andreicostin.com"
// Define return statuses
#define MFCUK_SUCCESS 0x0
#define MFCUK_OK_KEY_RECOVERED (MFCUK_SUCCESS+1)
#define MFCUK_FAIL_AUTH (MFCUK_OK_KEY_RECOVERED+1)
#define MFCUK_FAIL_CRAPTO (MFCUK_FAIL_AUTH+1)
#define MFCUK_FAIL_TAGTYPE_INVALID (MFCUK_FAIL_CRAPTO+1)
#define MFCUK_FAIL_KEYTYPE_INVALID (MFCUK_FAIL_TAGTYPE_INVALID+1)
#define MFCUK_FAIL_BLOCK_INVALID (MFCUK_FAIL_KEYTYPE_INVALID+1)
#define MFCUK_FAIL_SECTOR_INVALID (MFCUK_FAIL_BLOCK_INVALID+1)
#define MFCUK_FAIL_COMM (MFCUK_FAIL_SECTOR_INVALID+1)
#define MFCUK_FAIL_MEMORY (MFCUK_FAIL_COMM+1)
// There are 4 bytes in ACBITS, use each byte as below
#define ACTIONS_KEY_A 0 // Specifies the byte index where actions for key A are stored
#define RESULTS_KEY_A 1 // Specifies the byte index where results for key A are stored
#define ACTIONS_KEY_B 2 // Specifies the byte index where actions for key B are stored
#define RESULTS_KEY_B 3 // Specifies the byte index where results for key B are stored
// The action/result byte can contain any combination of these
#define ACTIONS_VERIFY 0x1 // Specifies whether the key should be first verified
#define ACTIONS_RECOVER 0x2 // Specifies whether the key should be recovered. If a key has verify action and the key was verified, RESULTS_ byte will indicate that and recovery will not take place
#define ACTIONS_KEYSET 0x4 // Specifies whether the key was set from command line rather that should be loaded from the eventual -i/-I dump
// Implementation specific, since we are not 100% sure we can fix the tag nonce
// Suppose from 2^32, only MAX 2^16 tag nonces will appear given current SLEEP_ values
#define MAX_TAG_NONCES 65536
// Maximum possible states allocated and returned by lsfr_common_prefix(). Used this value in the looping
#define MAX_COMMON_PREFIX_STATES (1<<20)
// 10 ms, though {WPMCC09} claims 30 us is enough
#define SLEEP_AT_FIELD_OFF 10
// 50 ms, seems pretty good constant, though if you don't like it - make it even 3.1415..., we don't care
#define SLEEP_AFTER_FIELD_ON 50
// Since the 29 bits of {Nr} are constant, darkside varies only "last" (0xFFFFFF1F) 3 bits, thus we have 8 possible parity bits arrays
#define MFCUK_DARKSIDE_MAX_LEVELS 8
#define MFCUK_DARKSIDE_START_NR 0xDEADBEEF
#define MFCUK_DARKSIDE_START_AR 0xFACECAFE
typedef struct tag_nonce_entry
{
uint32_t tagNonce; // Tag nonce we target for fixation
byte_t spoofFlag; // No spoofing until we have a successful auth with this tagNonce. Once we have, we want to spoof to get the encrypted 0x5 value
uint32_t num_of_appearances; // For statistics, how many times this tag nonce appeared for the given SLEEP_ values
// STAGE1 data for "dark side" and lsfr_common_prefix()
uint32_t spoofNrPfx; // PARAM: used as pfx, calculated from (spoofNrEnc & 0xFFFFFF1F). BUG: weird way to denote "first 29 prefix bits" in "dark side" paper. Perhaps I see the world different
uint32_t spoofNrEnc; // {Nr} value which we will be using to make the tag respond with 4 bits
uint32_t spoofArEnc; // PARAM: used as rr
uint8_t spoofParBitsEnc; // parity bits we are trying to guess for the first time
uint8_t spoofNackEnc; // store here the encrypted NACK returned first time we match the parity bits
uint8_t spoofKs; // store here the keystream ks used for encryptying spoofNackEnc, specifically spoofKs = spoofNackEnc ^ 0x5
// STAGE2 data for "dark side" and lsfr_common_prefix()
int current_out_of_8; // starting from -1 until we find parity for chosen spoofNrEnc,spoofArEnc
uint8_t parBitsCrntCombination[MFCUK_DARKSIDE_MAX_LEVELS]; // Loops over 32 combinations of the last 5 parity bits which generated the 4 bit NACK in STAGE1
uint32_t nrEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // the 29 bits constant prefix, varying only 3 bits, thus 8 possible values
uint32_t arEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // the same reader response as spoofArEnc; redundant but... :)
uint8_t ks[MFCUK_DARKSIDE_MAX_LEVELS]; // PARAM: used as ks, obtained as (ks[i] = nackEnc[i] ^ 0x5)
uint8_t nackEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // store here the encrypted 4 bits values which tag responded
uint8_t parBits[MFCUK_DARKSIDE_MAX_LEVELS]; // store here the values based on spoofParBitsEnc, varying only last 5 bits
uint8_t parBitsArr[MFCUK_DARKSIDE_MAX_LEVELS][8]; // PARAM: used as par, contains value of parBits byte-bit values just splitted out one bit per byte thus second pair of braces [8]
} tag_nonce_entry_t;
#endif // _MFCUK_KEYRECOVERY_DARKSIDE_H_

View File

@ -1,145 +1,145 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_mifare.h
Description:
MFCUK defines and function prototypes header file extending
mainly libnfc's "mifare.h" interface/functionality.
Contact, bug-reports:
http://andreicostin.com/
mailto:zveriu@gmail.com
License:
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_mifare.h
* @brief
*/
/*
VERSION HISTORY
--------------------------------------------------------------------------------
| Number : 0.1
| dd/mm/yyyy : 23/11/2009
| Author : zveriu@gmail.com, http://andreicostin.com
| Description: Moved bulk of defines and functions from "mfcuk_keyrecovery_darkside.c"
--------------------------------------------------------------------------------
*/
/*
LICENSE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _MFCUK_MIFARE_H_
#define _MFCUK_MIFARE_H_
#include <stdio.h>
#include <stdlib.h>
#include <nfc/nfc.h>
#include "mifare.h"
#define MIFARE_CLASSIC_UID_BYTELENGTH 4 // Length of a Mifare Classic UID in bytes
#define MIFARE_CLASSIC_KEY_BYTELENGTH 6 // Length of a Mifare Classic key in bytes
#define MIFARE_CLASSIC_1K_NAME "MC1K"
#define MIFARE_CLASSIC_4K_NAME "MC4K"
#define MIFARE_CLASSIC_UNKN_NAME "UNKN"
#define MIFARE_CLASSIC_1K 0x08 // MF1ICS50 Functional Specifications - 0x08
#define MIFARE_CLASSIC_4K 0x18 // MF1ICS70 Functional Specifications - 0x18
#define MIFARE_DESFIRE 0x20 // XXXXXXXX Functional Specifications - 0x20
#define MIFARE_CLASSIC_1K_RATB 0x88 // Infineon Licensed Mifare 1K = 0x88 (thanks JPS)
#define MIFARE_CLASSIC_4K_SKGT 0x98 // Infineon Licensed Mifare 4K = 0x98???
#define IS_MIFARE_CLASSIC_1K(ats_sak) ( ((ats_sak) == MIFARE_CLASSIC_1K) || ((ats_sak) == MIFARE_CLASSIC_1K_RATB) )
#define IS_MIFARE_CLASSIC_4K(ats_sak) ( ((ats_sak) == MIFARE_CLASSIC_4K) || ((ats_sak) == MIFARE_CLASSIC_4K_SKGT) )
#define IS_MIFARE_DESFIRE(ats_sak) ( ((ats_sak) == MIFARE_DESFIRE) )
#define IS_MIFARE_CLASSIC_1K_TAG(tag) IS_MIFARE_CLASSIC_1K(tag->amb[0].mbm.btUnknown)
#define IS_MIFARE_CLASSIC_4K_TAG(tag) IS_MIFARE_CLASSIC_4K(tag->amb[0].mbm.btUnknown)
#define IS_MIFARE_DESFIRE_TAG(tag) IS_MIFARE_DESFIRE(tag->amb[0].mbm.btUnknown)
#define MIFARE_CLASSIC_BYTES_PER_BLOCK 16 // Common for Mifare Classic 1K and Mifare Classic 4K
#define MIFARE_CLASSIC_INVALID_BLOCK 0xFFFFFFFF
#define MIFARE_CLASSIC_1K_MAX_SECTORS 16
#define MIFARE_CLASSIC_1K_BLOCKS_PER_SECTOR 4
#define MIFARE_CLASSIC_1K_MAX_BLOCKS ( (MIFARE_CLASSIC_1K_MAX_SECTORS) * (MIFARE_CLASSIC_1K_BLOCKS_PER_SECTOR) )
#define MIFARE_CLASSIC_4K_MAX_SECTORS1 32
#define MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1 MIFARE_CLASSIC_1K_BLOCKS_PER_SECTOR // Possibly NXP made it for Mifare 1K backward compatibility
#define MIFARE_CLASSIC_4K_MAX_BLOCKS1 ( (MIFARE_CLASSIC_4K_MAX_SECTORS1) * (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) )
#define MIFARE_CLASSIC_4K_MAX_SECTORS2 8
#define MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2 16
#define MIFARE_CLASSIC_4K_MAX_BLOCKS2 ( (MIFARE_CLASSIC_4K_MAX_SECTORS2) * (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) )
#define MIFARE_CLASSIC_4K_MAX_SECTORS ( (MIFARE_CLASSIC_4K_MAX_SECTORS1) + (MIFARE_CLASSIC_4K_MAX_SECTORS2) )
#define MIFARE_CLASSIC_4K_MAX_BLOCKS ( (MIFARE_CLASSIC_4K_MAX_BLOCKS1) + (MIFARE_CLASSIC_4K_MAX_BLOCKS2) )
#define MFCUK_EXTENDED_DESCRIPTION_LENGTH 128
// Define an extended type of dump, basically a wrapper dump around basic tag dump
typedef struct {
uint32_t uid; // looks redundant, but it is easier to use dmp.uid instead of dmp.amb.mbm.abtUID[0]...[3]
byte_t type; // ATS/SAK from ti.tia.btSak, example 0x08h for Mifare 1K, 0x18h for Mifare 4K
char datetime[14]; // non-zero-terminated date-time of dump in format YYYYMMDDH24MISS, example 20091114231541 - 14 Nov 2009, 11:15:41 PM
char description[MFCUK_EXTENDED_DESCRIPTION_LENGTH]; // a description of the tag dump, example "RATB_DUMP_BEFORE_PAY"
mifare_classic_tag tag_basic;
} mifare_classic_tag_ext;
// Define type of keys (A or B) in NXP notation
typedef enum {
keyA = 0x60,
keyB = 0x61,
} mifare_key_type;
// Default keys used as a *BIG* mistake in many applications - especially System Integrators should pay attention!
extern byte_t mfcuk_default_keys[][MIFARE_CLASSIC_KEY_BYTELENGTH];
extern int mfcuk_default_keys_num;
bool is_valid_block(byte_t bTagType, uint32_t uiBlock);
bool is_valid_sector(byte_t bTagType, uint32_t uiSector);
bool is_first_block(byte_t bTagType, uint32_t uiBlock);
bool is_trailer_block(byte_t bTagType, uint32_t uiBlock);
uint32_t get_first_block(byte_t bTagType, uint32_t uiBlock);
uint32_t get_trailer_block(byte_t bTagType, uint32_t uiBlock);
bool is_big_sector(byte_t bTagType, uint32_t uiSector);
uint32_t get_first_block_for_sector(byte_t bTagType, uint32_t uiSector);
uint32_t get_trailer_block_for_sector(byte_t bTagType, uint32_t uiSector);
uint32_t get_sector_for_block(byte_t bTagType, uint32_t uiBlock);
bool is_first_sector(byte_t bTagType, uint32_t uiSector);
bool is_first_big_sector(byte_t bTagType, uint32_t uiSector);
bool is_first_small_sector(byte_t bTagType, uint32_t uiSector);
bool is_last_sector(byte_t bTagType, uint32_t uiSector);
bool is_last_big_sector(byte_t bTagType, uint32_t uiSector);
bool is_last_small_sector(byte_t bTagType, uint32_t uiSector);
void test_mifare_classic_blocks_sectors_functions(byte_t bTagType);
bool mfcuk_save_tag_dump(char *filename, mifare_classic_tag *tag);
bool mfcuk_save_tag_dump_ext(char *filename, mifare_classic_tag_ext *tag_ext);
bool mfcuk_load_tag_dump(char *filename, mifare_classic_tag *tag);
bool mfcuk_load_tag_dump_ext(char *filename, mifare_classic_tag_ext *tag_ext);
void print_mifare_classic_tag_keys(const char *title, mifare_classic_tag *tag);
bool mfcuk_key_uint64_to_arr(const uint64_t *ui64Key, byte_t *arr6Key);
bool mfcuk_key_arr_to_uint64(const byte_t *arr6Key, uint64_t *ui64Key);
#endif // _MFCUK_MIFARE_H_
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_mifare.h
Description:
MFCUK defines and function prototypes header file extending
mainly libnfc's "mifare.h" interface/functionality.
Contact, bug-reports:
http://andreicostin.com/
mailto:zveriu@gmail.com
License:
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_mifare.h
* @brief
*/
/*
VERSION HISTORY
--------------------------------------------------------------------------------
| Number : 0.1
| dd/mm/yyyy : 23/11/2009
| Author : zveriu@gmail.com, http://andreicostin.com
| Description: Moved bulk of defines and functions from "mfcuk_keyrecovery_darkside.c"
--------------------------------------------------------------------------------
*/
/*
LICENSE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _MFCUK_MIFARE_H_
#define _MFCUK_MIFARE_H_
#include <stdio.h>
#include <stdlib.h>
#include <nfc/nfc.h>
#include "mifare.h"
#define MIFARE_CLASSIC_UID_BYTELENGTH 4 // Length of a Mifare Classic UID in bytes
#define MIFARE_CLASSIC_KEY_BYTELENGTH 6 // Length of a Mifare Classic key in bytes
#define MIFARE_CLASSIC_1K_NAME "MC1K"
#define MIFARE_CLASSIC_4K_NAME "MC4K"
#define MIFARE_CLASSIC_UNKN_NAME "UNKN"
#define MIFARE_CLASSIC_1K 0x08 // MF1ICS50 Functional Specifications - 0x08
#define MIFARE_CLASSIC_4K 0x18 // MF1ICS70 Functional Specifications - 0x18
#define MIFARE_DESFIRE 0x20 // XXXXXXXX Functional Specifications - 0x20
#define MIFARE_CLASSIC_1K_RATB 0x88 // Infineon Licensed Mifare 1K = 0x88 (thanks JPS)
#define MIFARE_CLASSIC_4K_SKGT 0x98 // Infineon Licensed Mifare 4K = 0x98???
#define IS_MIFARE_CLASSIC_1K(ats_sak) ( ((ats_sak) == MIFARE_CLASSIC_1K) || ((ats_sak) == MIFARE_CLASSIC_1K_RATB) )
#define IS_MIFARE_CLASSIC_4K(ats_sak) ( ((ats_sak) == MIFARE_CLASSIC_4K) || ((ats_sak) == MIFARE_CLASSIC_4K_SKGT) )
#define IS_MIFARE_DESFIRE(ats_sak) ( ((ats_sak) == MIFARE_DESFIRE) )
#define IS_MIFARE_CLASSIC_1K_TAG(tag) IS_MIFARE_CLASSIC_1K(tag->amb[0].mbm.btUnknown)
#define IS_MIFARE_CLASSIC_4K_TAG(tag) IS_MIFARE_CLASSIC_4K(tag->amb[0].mbm.btUnknown)
#define IS_MIFARE_DESFIRE_TAG(tag) IS_MIFARE_DESFIRE(tag->amb[0].mbm.btUnknown)
#define MIFARE_CLASSIC_BYTES_PER_BLOCK 16 // Common for Mifare Classic 1K and Mifare Classic 4K
#define MIFARE_CLASSIC_INVALID_BLOCK 0xFFFFFFFF
#define MIFARE_CLASSIC_1K_MAX_SECTORS 16
#define MIFARE_CLASSIC_1K_BLOCKS_PER_SECTOR 4
#define MIFARE_CLASSIC_1K_MAX_BLOCKS ( (MIFARE_CLASSIC_1K_MAX_SECTORS) * (MIFARE_CLASSIC_1K_BLOCKS_PER_SECTOR) )
#define MIFARE_CLASSIC_4K_MAX_SECTORS1 32
#define MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1 MIFARE_CLASSIC_1K_BLOCKS_PER_SECTOR // Possibly NXP made it for Mifare 1K backward compatibility
#define MIFARE_CLASSIC_4K_MAX_BLOCKS1 ( (MIFARE_CLASSIC_4K_MAX_SECTORS1) * (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) )
#define MIFARE_CLASSIC_4K_MAX_SECTORS2 8
#define MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2 16
#define MIFARE_CLASSIC_4K_MAX_BLOCKS2 ( (MIFARE_CLASSIC_4K_MAX_SECTORS2) * (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) )
#define MIFARE_CLASSIC_4K_MAX_SECTORS ( (MIFARE_CLASSIC_4K_MAX_SECTORS1) + (MIFARE_CLASSIC_4K_MAX_SECTORS2) )
#define MIFARE_CLASSIC_4K_MAX_BLOCKS ( (MIFARE_CLASSIC_4K_MAX_BLOCKS1) + (MIFARE_CLASSIC_4K_MAX_BLOCKS2) )
#define MFCUK_EXTENDED_DESCRIPTION_LENGTH 128
// Define an extended type of dump, basically a wrapper dump around basic tag dump
typedef struct {
uint32_t uid; // looks redundant, but it is easier to use dmp.uid instead of dmp.amb.mbm.abtUID[0]...[3]
byte_t type; // ATS/SAK from ti.tia.btSak, example 0x08h for Mifare 1K, 0x18h for Mifare 4K
char datetime[14]; // non-zero-terminated date-time of dump in format YYYYMMDDH24MISS, example 20091114231541 - 14 Nov 2009, 11:15:41 PM
char description[MFCUK_EXTENDED_DESCRIPTION_LENGTH]; // a description of the tag dump, example "RATB_DUMP_BEFORE_PAY"
mifare_classic_tag tag_basic;
} mifare_classic_tag_ext;
// Define type of keys (A or B) in NXP notation
typedef enum {
keyA = 0x60,
keyB = 0x61,
} mifare_key_type;
// Default keys used as a *BIG* mistake in many applications - especially System Integrators should pay attention!
extern byte_t mfcuk_default_keys[][MIFARE_CLASSIC_KEY_BYTELENGTH];
extern int mfcuk_default_keys_num;
bool is_valid_block(byte_t bTagType, uint32_t uiBlock);
bool is_valid_sector(byte_t bTagType, uint32_t uiSector);
bool is_first_block(byte_t bTagType, uint32_t uiBlock);
bool is_trailer_block(byte_t bTagType, uint32_t uiBlock);
uint32_t get_first_block(byte_t bTagType, uint32_t uiBlock);
uint32_t get_trailer_block(byte_t bTagType, uint32_t uiBlock);
bool is_big_sector(byte_t bTagType, uint32_t uiSector);
uint32_t get_first_block_for_sector(byte_t bTagType, uint32_t uiSector);
uint32_t get_trailer_block_for_sector(byte_t bTagType, uint32_t uiSector);
uint32_t get_sector_for_block(byte_t bTagType, uint32_t uiBlock);
bool is_first_sector(byte_t bTagType, uint32_t uiSector);
bool is_first_big_sector(byte_t bTagType, uint32_t uiSector);
bool is_first_small_sector(byte_t bTagType, uint32_t uiSector);
bool is_last_sector(byte_t bTagType, uint32_t uiSector);
bool is_last_big_sector(byte_t bTagType, uint32_t uiSector);
bool is_last_small_sector(byte_t bTagType, uint32_t uiSector);
void test_mifare_classic_blocks_sectors_functions(byte_t bTagType);
bool mfcuk_save_tag_dump(char *filename, mifare_classic_tag *tag);
bool mfcuk_save_tag_dump_ext(char *filename, mifare_classic_tag_ext *tag_ext);
bool mfcuk_load_tag_dump(char *filename, mifare_classic_tag *tag);
bool mfcuk_load_tag_dump_ext(char *filename, mifare_classic_tag_ext *tag_ext);
void print_mifare_classic_tag_keys(const char *title, mifare_classic_tag *tag);
bool mfcuk_key_uint64_to_arr(const uint64_t *ui64Key, byte_t *arr6Key);
bool mfcuk_key_arr_to_uint64(const byte_t *arr6Key, uint64_t *ui64Key);
#endif // _MFCUK_MIFARE_H_

View File

@ -1,81 +1,81 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_utils.c
Description:
MFCUK common utility functions implementation.
License:
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_utils.c
* @brief
*/
/*
VERSION HISTORY
--------------------------------------------------------------------------------
| Number : 0.1
| dd/mm/yyyy : 23/11/2009
| Author : zveriu@gmail.com, http://andreicostin.com
| Description: Moved bulk of defines and prototypes from "mfcuk_keyrecovery_darkside.c"
--------------------------------------------------------------------------------
*/
/*
LICENSE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "mfcuk_utils.h"
#ifdef __STDC__
struct timeval global_timeout;
#endif
/*
http://www.velocityreviews.com/forums/t451319-advice-required-on-my-ascii-to-hex-conversion-c.html
Basically, converting a hex digit into a hex nibble (4 binary digits) algorithm looks like;
char xdigit; // hex digit to convert [0-9A-Fa-f]
xdigit = tolower(xdigit); // make it lowercase [0-9a-f]
xdigit -= '0'; // if it was a [0-9] digit, it's the value now
if(xdigit > 9) // if it was a [a-f] digit, compensate for that
xdigit = xdigit + '0' - 'a';
The below code is just an optimization of the algorithm. Maxim Yegorushkin
*/
/*inline*/
int is_hex(char c)
{
return (c >= '0' && c <= '9') || ((c | 0x20) >= 'a' && (c | 0x20) <= 'f');
}
/*inline*/
unsigned char hex2bin(unsigned char h, unsigned char l)
{
h |= 0x20; // to lower
h -= 0x30;
h -= -(h > 9) & 0x27;
l |= 0x20;
l -= 0x30;
l -= -(l > 9) & 0x27;
return h << 4 | l;
}
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_utils.c
Description:
MFCUK common utility functions implementation.
License:
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_utils.c
* @brief
*/
/*
VERSION HISTORY
--------------------------------------------------------------------------------
| Number : 0.1
| dd/mm/yyyy : 23/11/2009
| Author : zveriu@gmail.com, http://andreicostin.com
| Description: Moved bulk of defines and prototypes from "mfcuk_keyrecovery_darkside.c"
--------------------------------------------------------------------------------
*/
/*
LICENSE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "mfcuk_utils.h"
#ifdef __STDC__
struct timeval global_timeout;
#endif
/*
http://www.velocityreviews.com/forums/t451319-advice-required-on-my-ascii-to-hex-conversion-c.html
Basically, converting a hex digit into a hex nibble (4 binary digits) algorithm looks like;
char xdigit; // hex digit to convert [0-9A-Fa-f]
xdigit = tolower(xdigit); // make it lowercase [0-9a-f]
xdigit -= '0'; // if it was a [0-9] digit, it's the value now
if(xdigit > 9) // if it was a [a-f] digit, compensate for that
xdigit = xdigit + '0' - 'a';
The below code is just an optimization of the algorithm. Maxim Yegorushkin
*/
/*inline*/
int is_hex(char c)
{
return (c >= '0' && c <= '9') || ((c | 0x20) >= 'a' && (c | 0x20) <= 'f');
}
/*inline*/
unsigned char hex2bin(unsigned char h, unsigned char l)
{
h |= 0x20; // to lower
h -= 0x30;
h -= -(h > 9) & 0x27;
l |= 0x20;
l -= 0x30;
l -= -(l > 9) & 0x27;
return h << 4 | l;
}

View File

@ -1,223 +1,223 @@
// XGetopt.cpp Version 1.2
//
// Author: Hans Dietrich
// hdietrich2@hotmail.com
//
// Description:
// XGetopt.cpp implements getopt(), a function to parse command lines.
//
// History
// Version 1.2 - 2003 May 17
// - Added Unicode support
//
// Version 1.1 - 2002 March 10
// - Added example to XGetopt.cpp module header
//
// This software is released into the public domain.
// You are free to use it in any way you like.
//
// This software is provided "as is" with no expressed
// or implied warranty. I accept no liability for any
// damage or loss of business that this software may cause.
//
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// if you are using precompiled headers then include this line:
//#include "stdafx.h"
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// if you are not using precompiled headers then include these lines:
//#include
//#include
//#include
///////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <string.h>
#include "xgetopt.h"
///////////////////////////////////////////////////////////////////////////////
//
// X G e t o p t . c p p
//
//
// NAME
// getopt -- parse command line options
//
// SYNOPSIS
// int getopt(int argc, char *argv[], char *optstring)
//
// extern char *optarg;
// extern int optind;
//
// DESCRIPTION
// The getopt() function parses the command line arguments. Its
// arguments argc and argv are the argument count and array as
// passed into the application on program invocation. In the case
// of Visual C++ programs, argc and argv are available via the
// variables __argc and __argv (double underscores), respectively.
// getopt returns the next option letter in argv that matches a
// letter in optstring. (Note: Unicode programs should use
// __targv instead of __argv. Also, all character and string
// literals should be enclosed in _T( ) ).
//
// optstring is a string of recognized option letters; if a letter
// is followed by a colon, the option is expected to have an argument
// that may or may not be separated from it by white space. optarg
// is set to point to the start of the option argument on return from
// getopt.
//
// Option letters may be combined, e.g., "-ab" is equivalent to
// "-a -b". Option letters are case sensitive.
//
// getopt places in the external variable optind the argv index
// of the next argument to be processed. optind is initialized
// to 0 before the first call to getopt.
//
// When all options have been processed (i.e., up to the first
// non-option argument), getopt returns EOF, optarg will point
// to the argument, and optind will be set to the argv index of
// the argument. If there are no non-option arguments, optarg
// will be set to NULL.
//
// The special option "--" may be used to delimit the end of the
// options; EOF will be returned, and "--" (and everything after it)
// will be skipped.
//
// RETURN VALUE
// For option letters contained in the string optstring, getopt
// will return the option letter. getopt returns a question mark (?)
// when it encounters an option letter not included in optstring.
// EOF is returned when processing is finished.
//
// BUGS
// 1) Long options are not supported.
// 2) The GNU double-colon extension is not supported.
// 3) The environment variable POSIXLY_CORRECT is not supported.
// 4) The + syntax is not supported.
// 5) The automatic permutation of arguments is not supported.
// 6) This implementation of getopt() returns EOF if an error is
// encountered, instead of -1 as the latest standard requires.
//
// EXAMPLE
// BOOL CMyApp::ProcessCommandLine(int argc, char *argv[])
// {
// int c;
//
// while ((c = getopt(argc, argv, _T("aBn:"))) != EOF)
// {
// switch (c)
// {
// case _T('a'):
// TRACE(_T("option a\n"));
// //
// // set some flag here
// //
// break;
//
// case _T('B'):
// TRACE( _T("option B\n"));
// //
// // set some other flag here
// //
// break;
//
// case _T('n'):
// TRACE(_T("option n: value=%d\n"), atoi(optarg));
// //
// // do something with value here
// //
// break;
//
// case _T('?'):
// TRACE(_T("ERROR: illegal option %s\n"), argv[optind-1]);
// return FALSE;
// break;
//
// default:
// TRACE(_T("WARNING: no handler for option %c\n"), c);
// return FALSE;
// break;
// }
// }
// //
// // check for non-option args here
// //
// return TRUE;
// }
//
///////////////////////////////////////////////////////////////////////////////
char *optarg; // global argument pointer
int optind = 0; // global argv index
int getopt(int argc, char *argv[], char *optstring)
{
char c = 0;
char *cp = NULL;
static char *next = NULL;
if (optind == 0)
next = NULL;
optarg = NULL;
if (next == NULL || *next == '\0')
{
if (optind == 0)
optind++;
if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0')
{
optarg = NULL;
if (optind < argc)
optarg = argv[optind];
return EOF;
}
if (strcmp(argv[optind], "--") == 0)
{
optind++;
optarg = NULL;
if (optind < argc)
optarg = argv[optind];
return EOF;
}
next = argv[optind];
next++; // skip past -
optind++;
}
c = *next++;
cp = strchr(optstring, c);
if (cp == NULL || c == ':')
return '?';
cp++;
if (*cp == ':')
{
if (*next != '\0')
{
optarg = next;
next = NULL;
}
else if (optind < argc)
{
optarg = argv[optind];
optind++;
}
else
{
return '?';
}
}
return c;
}
// XGetopt.cpp Version 1.2
//
// Author: Hans Dietrich
// hdietrich2@hotmail.com
//
// Description:
// XGetopt.cpp implements getopt(), a function to parse command lines.
//
// History
// Version 1.2 - 2003 May 17
// - Added Unicode support
//
// Version 1.1 - 2002 March 10
// - Added example to XGetopt.cpp module header
//
// This software is released into the public domain.
// You are free to use it in any way you like.
//
// This software is provided "as is" with no expressed
// or implied warranty. I accept no liability for any
// damage or loss of business that this software may cause.
//
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// if you are using precompiled headers then include this line:
//#include "stdafx.h"
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// if you are not using precompiled headers then include these lines:
//#include
//#include
//#include
///////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <string.h>
#include "xgetopt.h"
///////////////////////////////////////////////////////////////////////////////
//
// X G e t o p t . c p p
//
//
// NAME
// getopt -- parse command line options
//
// SYNOPSIS
// int getopt(int argc, char *argv[], char *optstring)
//
// extern char *optarg;
// extern int optind;
//
// DESCRIPTION
// The getopt() function parses the command line arguments. Its
// arguments argc and argv are the argument count and array as
// passed into the application on program invocation. In the case
// of Visual C++ programs, argc and argv are available via the
// variables __argc and __argv (double underscores), respectively.
// getopt returns the next option letter in argv that matches a
// letter in optstring. (Note: Unicode programs should use
// __targv instead of __argv. Also, all character and string
// literals should be enclosed in _T( ) ).
//
// optstring is a string of recognized option letters; if a letter
// is followed by a colon, the option is expected to have an argument
// that may or may not be separated from it by white space. optarg
// is set to point to the start of the option argument on return from
// getopt.
//
// Option letters may be combined, e.g., "-ab" is equivalent to
// "-a -b". Option letters are case sensitive.
//
// getopt places in the external variable optind the argv index
// of the next argument to be processed. optind is initialized
// to 0 before the first call to getopt.
//
// When all options have been processed (i.e., up to the first
// non-option argument), getopt returns EOF, optarg will point
// to the argument, and optind will be set to the argv index of
// the argument. If there are no non-option arguments, optarg
// will be set to NULL.
//
// The special option "--" may be used to delimit the end of the
// options; EOF will be returned, and "--" (and everything after it)
// will be skipped.
//
// RETURN VALUE
// For option letters contained in the string optstring, getopt
// will return the option letter. getopt returns a question mark (?)
// when it encounters an option letter not included in optstring.
// EOF is returned when processing is finished.
//
// BUGS
// 1) Long options are not supported.
// 2) The GNU double-colon extension is not supported.
// 3) The environment variable POSIXLY_CORRECT is not supported.
// 4) The + syntax is not supported.
// 5) The automatic permutation of arguments is not supported.
// 6) This implementation of getopt() returns EOF if an error is
// encountered, instead of -1 as the latest standard requires.
//
// EXAMPLE
// BOOL CMyApp::ProcessCommandLine(int argc, char *argv[])
// {
// int c;
//
// while ((c = getopt(argc, argv, _T("aBn:"))) != EOF)
// {
// switch (c)
// {
// case _T('a'):
// TRACE(_T("option a\n"));
// //
// // set some flag here
// //
// break;
//
// case _T('B'):
// TRACE( _T("option B\n"));
// //
// // set some other flag here
// //
// break;
//
// case _T('n'):
// TRACE(_T("option n: value=%d\n"), atoi(optarg));
// //
// // do something with value here
// //
// break;
//
// case _T('?'):
// TRACE(_T("ERROR: illegal option %s\n"), argv[optind-1]);
// return FALSE;
// break;
//
// default:
// TRACE(_T("WARNING: no handler for option %c\n"), c);
// return FALSE;
// break;
// }
// }
// //
// // check for non-option args here
// //
// return TRUE;
// }
//
///////////////////////////////////////////////////////////////////////////////
char *optarg; // global argument pointer
int optind = 0; // global argv index
int getopt(int argc, char *argv[], char *optstring)
{
char c = 0;
char *cp = NULL;
static char *next = NULL;
if (optind == 0)
next = NULL;
optarg = NULL;
if (next == NULL || *next == '\0')
{
if (optind == 0)
optind++;
if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0')
{
optarg = NULL;
if (optind < argc)
optarg = argv[optind];
return EOF;
}
if (strcmp(argv[optind], "--") == 0)
{
optind++;
optarg = NULL;
if (optind < argc)
optarg = argv[optind];
return EOF;
}
next = argv[optind];
next++; // skip past -
optind++;
}
c = *next++;
cp = strchr(optstring, c);
if (cp == NULL || c == ':')
return '?';
cp++;
if (*cp == ':')
{
if (*next != '\0')
{
optarg = next;
next = NULL;
}
else if (optind < argc)
{
optarg = argv[optind];
optind++;
}
else
{
return '?';
}
}
return c;
}

View File

@ -1,23 +1,23 @@
// XGetopt.h Version 1.2
//
// Author: Hans Dietrich
// hdietrich2@hotmail.com
//
// This software is released into the public domain.
// You are free to use it in any way you like.
//
// This software is provided "as is" with no expressed
// or implied warranty. I accept no liability for any
// damage or loss of business that this software may cause.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef XGETOPT_H
#define XGETOPT_H
extern int optind, opterr;
extern char *optarg;
int getopt(int argc, char *argv[], char *optstring);
#endif //XGETOPT_H
// XGetopt.h Version 1.2
//
// Author: Hans Dietrich
// hdietrich2@hotmail.com
//
// This software is released into the public domain.
// You are free to use it in any way you like.
//
// This software is provided "as is" with no expressed
// or implied warranty. I accept no liability for any
// damage or loss of business that this software may cause.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef XGETOPT_H
#define XGETOPT_H
extern int optind, opterr;
extern char *optarg;
int getopt(int argc, char *argv[], char *optstring);
#endif //XGETOPT_H