Applies make style

This commit is contained in:
romuald@libnfc.org 2013-01-30 14:54:27 +00:00
parent 22fa583429
commit 776b0d3f79
13 changed files with 2458 additions and 2741 deletions

View File

@ -24,49 +24,49 @@
static uint8_t filterlut[1 << 20];
static void __attribute__((constructor)) fill_lut()
{
uint32_t i;
for(i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
uint32_t i;
for (i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
}
#define filter(x) (filterlut[(x) & 0xfffff])
#endif
static void quicksort(uint32_t* const start, uint32_t* const stop)
static void quicksort(uint32_t *const start, uint32_t *const stop)
{
uint32_t *it = start + 1, *rit = stop;
uint32_t *it = start + 1, *rit = stop;
if(it > rit)
return;
if (it > rit)
return;
while(it < rit)
if(*it <= *start)
++it;
else if(*rit > *start)
--rit;
else
*it ^= (*it ^= *rit, *rit ^= *it);
while (it < rit)
if (*it <= *start)
++it;
else if (*rit > *start)
--rit;
else
*it ^= (*it ^= *rit, *rit ^= *it);
if(*rit >= *start)
--rit;
if(rit != start)
*rit ^= (*rit ^= *start, *start ^= *rit);
if (*rit >= *start)
--rit;
if (rit != start)
*rit ^= (*rit ^= *start, *start ^= *rit);
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
static inline uint32_t *binsearch(uint32_t *start, uint32_t *stop)
{
uint32_t mid, val = *stop & 0xff000000;
while(start != stop)
if(start[mid = (stop - start) >> 1] > val)
stop = &start[mid];
else
start += mid + 1;
uint32_t mid, val = *stop & 0xff000000;
while (start != stop)
if (start[mid = (stop - start) >> 1] > val)
stop = &start[mid];
else
start += mid + 1;
return start;
return start;
}
/** update_contribution
@ -75,11 +75,11 @@ static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
static inline void
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
{
uint32_t p = *item >> 25;
uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff);
p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff);
}
/** extend_table
@ -88,228 +88,229 @@ update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
in <<= 24;
for (*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if (filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if (filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
} else if(filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
*tbl-- = *(*end)--;
for (*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if (filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
} else if (filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
*tbl-- = *(*end)--;
}
/** recover
* recursively narrow down the search space, 4 bits of keystream at a time
*/
static struct Crypto1State*
static struct Crypto1State *
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in)
{
uint32_t *o, *e, i;
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in) {
uint32_t *o, *e, i;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
return sl;
}
if (rem == -1) {
for (e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for (o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
return sl;
}
for(i = 0; i < 4 && rem--; i++) {
oks >>= 1;
eks >>= 1;
in >>= 2;
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
return sl;
for (i = 0; i < 4 && rem--; i++) {
oks >>= 1;
eks >>= 1;
in >>= 2;
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
LF_POLY_ODD << 1, 0);
if (o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
LF_POLY_EVEN << 1 | 1, in & 3);
if(e_head > e_tail)
return sl;
}
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
LF_POLY_EVEN << 1 | 1, in & 3);
if (e_head > e_tail)
return sl;
}
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
while(o_tail >= o_head && e_tail >= e_head)
if(((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
}
else if(*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
while (o_tail >= o_head && e_tail >= e_head)
if (((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
} else if (*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
return sl;
return sl;
}
/** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream
* additionally you can use the in parameter to specify the value
* that was fed into the lfsr at the time the keystream was generated
*/
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
{
struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
struct Crypto1State *lfsr_recovery32(uint32_t ks2, uint32_t in) {
struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i);
for (i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for (i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist) {
free(statelist);
statelist = 0;
goto out;
}
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if (!odd_tail-- || !even_tail-- || !statelist) {
free(statelist);
statelist = 0;
goto out;
}
statelist->odd = statelist->even = 0;
statelist->odd = statelist->even = 0;
for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1))
*++odd_tail = i;
if(filter(i) == (eks & 1))
*++even_tail = i;
}
for (i = 1 << 20; i >= 0; --i) {
if (filter(i) == (oks & 1))
*++odd_tail = i;
if (filter(i) == (eks & 1))
*++even_tail = i;
}
for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
for (i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
out:
free(odd_head);
free(even_head);
return statelist;
free(odd_head);
free(even_head);
return statelist;
}
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA
};
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020};
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020
};
static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C
};
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0
};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states
* Variation mentioned in the paper. Somewhat optimized version
*/
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
{
struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16];
int i, j;
struct Crypto1State *lfsr_recovery64(uint32_t ks2, uint32_t ks3) {
struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16];
int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if(!sl)
return 0;
sl->odd = sl->even = 0;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if (!sl)
return 0;
sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BEBIT(ks2, i);
oks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BEBIT(ks2, i);
eks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for (i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BEBIT(ks2, i);
oks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for (i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BEBIT(ks2, i);
eks[16 + (i >> 1)] = BEBIT(ks3, i);
}
for(i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
for (i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
*(tail = table) = i;
for(j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
*(tail = table) = i;
for (j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
if(tail < table)
continue;
if (tail < table)
continue;
for(j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for(j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for (j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for (j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for(; tail >= table; --tail) {
for(j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
if(filter(*tail) != oks[29 + j])
goto continue2;
}
for (; tail >= table; --tail) {
for (j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^(*tail & C2[j]));
if (filter(*tail) != oks[29 + j])
goto continue2;
}
for(j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
for (j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
win ^= low;
for(j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if(filter(win) != eks[j])
goto continue2;
}
win ^= low;
for (j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if (filter(win) != eks[j])
goto continue2;
}
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:;
}
}
return statelist;
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:
;
}
}
return statelist;
}
/** lfsr_rollback_bit
@ -317,41 +318,41 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
*/
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint8_t ret;
int out;
uint8_t ret;
s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb;
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23;
return ret;
s->even |= parity(out) << 23;
return ret;
}
/** lfsr_rollback_byte
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{
int i, ret = 0;
for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
return ret;
int i, ret = 0;
for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
return ret;
}
/** lfsr_rollback_word
* Rollback the shift register in order to get previous states
*/
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
return ret;
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
return ret;
}
/** nonce_distance
@ -360,25 +361,26 @@ uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to)
{
uint16_t x, i;
if(!dist) {
dist = malloc(2 << 16);
if(!dist)
return -1;
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
}
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
uint16_t x, i;
if (!dist) {
dist = malloc(2 << 16);
if (!dist)
return -1;
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
}
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
}
static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}
};
/** lfsr_prefix_ks
*
* Is an exported helper function from the common prefix attack
@ -390,91 +392,89 @@ static uint32_t fastfwd[2][8] = {
*/
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{
uint32_t c, entry, *candidates = malloc(4 << 10);
int i, size = 0, good;
uint32_t c, entry, *candidates = malloc(4 << 10);
int i, size = 0, good;
if(!candidates)
return 0;
if (!candidates)
return 0;
for(i = 0; i < 1 << 21; ++i) {
for(c = 0, good = 1; good && c < 8; ++c) {
entry = i ^ fastfwd[isodd][c];
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
good &= (BIT(ks[c], isodd + 2) == filter(entry));
}
if(good)
candidates[size++] = i;
}
for (i = 0; i < 1 << 21; ++i) {
for (c = 0, good = 1; good && c < 8; ++c) {
entry = i ^ fastfwd[isodd][c];
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
good &= (BIT(ks[c], isodd + 2) == filter(entry));
}
if (good)
candidates[size++] = i;
}
candidates[size] = -1;
candidates[size] = -1;
return candidates;
return candidates;
}
/** check_pfx_parity
* helper function which eliminates possible secret states using parity bits
*/
static struct Crypto1State*
static struct Crypto1State *
check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State* sl)
{
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
uint32_t odd, uint32_t even, struct Crypto1State *sl) {
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
for (c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp;
nr = ks1 ^(prefix | c << 5);
rr = ks2 ^ rresp;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return sl + good;
}
return sl + good;
}
/** lfsr_common_prefix
* Implentation of the common prefix attack.
*/
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
struct Crypto1State *
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]) {
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) {
free(statelist);
statelist = 0;
goto out;
}
s = statelist = malloc((sizeof *statelist) << 20);
if (!s || !odd || !even) {
free(statelist);
statelist = 0;
goto out;
}
for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
for (o = odd; *o + 1; ++o)
for (e = even; *e + 1; ++e)
for (top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = 0;
s->odd = s->even = 0;
out:
free(odd);
free(even);
return statelist;
free(odd);
free(even);
return statelist;
}

View File

@ -24,69 +24,69 @@
extern "C" {
#endif
struct Crypto1State {uint32_t odd, even;};
struct Crypto1State* crypto1_create(uint64_t);
void crypto1_destroy(struct Crypto1State*);
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
uint32_t prng_successor(uint32_t x, uint32_t n);
struct Crypto1State {uint32_t odd, even;};
struct Crypto1State *crypto1_create(uint64_t);
void crypto1_destroy(struct Crypto1State *);
void crypto1_get_lfsr(struct Crypto1State *, uint64_t *);
uint8_t crypto1_bit(struct Crypto1State *, uint8_t, int);
uint8_t crypto1_byte(struct Crypto1State *, uint8_t, int);
uint32_t crypto1_word(struct Crypto1State *, uint32_t, int);
uint32_t prng_successor(uint32_t x, uint32_t n);
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
struct Crypto1State *lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State *lfsr_recovery64(uint32_t ks2, uint32_t ks3);
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
struct Crypto1State *
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb);
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\
int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
break;\
else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else
uint32_t __n = 0,__M = 0, N = 0;\
int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
break;\
else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else
#define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804)
#define BIT(x, n) ((x) >> (n) & 1)
#define BEBIT(x, n) BIT(x, (n) ^ 24)
static inline int parity(uint32_t x)
{
static inline int parity(uint32_t x)
{
#if !defined __i386__ || !defined __GNUC__
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
return BIT(0x6996, x & 0xf);
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
return BIT(0x6996, x & 0xf);
#else
asm( "movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
return x;
asm("movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax", "ecx");
return x;
#endif
}
static inline int filter(uint32_t const x)
{
uint32_t f;
}
static inline int filter(uint32_t const x)
{
uint32_t f;
f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
#ifdef __cplusplus
}
#endif

View File

@ -21,63 +21,62 @@
#include <stdlib.h>
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
struct Crypto1State * crypto1_create(uint64_t key)
{
struct Crypto1State *s = malloc(sizeof(*s));
int i;
struct Crypto1State *crypto1_create(uint64_t key) {
struct Crypto1State *s = malloc(sizeof(*s));
int i;
for(i = 47;s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
return s;
for (i = 47; s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
return s;
}
void crypto1_destroy(struct Crypto1State *state)
{
free(state);
free(state);
}
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{
int i;
for(*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
}
int i;
for (*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
}
}
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint32_t feedin;
uint8_t ret = filter(s->odd);
uint32_t feedin;
uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted;
feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
feedin = ret & !!is_encrypted;
feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
return ret;
return ret;
}
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint8_t i, ret = 0;
uint8_t i, ret = 0;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
return ret;
return ret;
}
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{
uint32_t i, ret = 0;
uint32_t i, ret = 0;
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
return ret;
return ret;
}
/* prng_successor
@ -85,9 +84,9 @@ uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
*/
uint32_t prng_successor(uint32_t x, uint32_t n)
{
SWAPENDIAN(x);
while(n--)
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
SWAPENDIAN(x);
while (n--)
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x);
return SWAPENDIAN(x);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,7 +1,7 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Filename:
mfcuk_keyrecovery_darkside.h
@ -16,7 +16,7 @@
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_keyrecovery_darkside.h
* @brief
* @brief
*/
/*
@ -36,14 +36,14 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _MFCUK_KEYRECOVERY_DARKSIDE_H_
@ -92,29 +92,28 @@
#define MFCUK_DARKSIDE_START_NR 0xDEADBEEF
#define MFCUK_DARKSIDE_START_AR 0xFACECAFE
typedef struct tag_nonce_entry
{
uint32_t tagNonce; // Tag nonce we target for fixation
uint8_t spoofFlag; // No spoofing until we have a successful auth with this tagNonce. Once we have, we want to spoof to get the encrypted 0x5 value
uint32_t num_of_appearances; // For statistics, how many times this tag nonce appeared for the given SLEEP_ values
typedef struct tag_nonce_entry {
uint32_t tagNonce; // Tag nonce we target for fixation
uint8_t spoofFlag; // No spoofing until we have a successful auth with this tagNonce. Once we have, we want to spoof to get the encrypted 0x5 value
uint32_t num_of_appearances; // For statistics, how many times this tag nonce appeared for the given SLEEP_ values
// STAGE1 data for "dark side" and lsfr_common_prefix()
uint32_t spoofNrPfx; // PARAM: used as pfx, calculated from (spoofNrEnc & 0xFFFFFF1F). BUG: weird way to denote "first 29 prefix bits" in "dark side" paper. Perhaps I see the world different
uint32_t spoofNrEnc; // {Nr} value which we will be using to make the tag respond with 4 bits
uint32_t spoofArEnc; // PARAM: used as rr
uint8_t spoofParBitsEnc; // parity bits we are trying to guess for the first time
uint8_t spoofNackEnc; // store here the encrypted NACK returned first time we match the parity bits
uint8_t spoofKs; // store here the keystream ks used for encryptying spoofNackEnc, specifically spoofKs = spoofNackEnc ^ 0x5
// STAGE1 data for "dark side" and lsfr_common_prefix()
uint32_t spoofNrPfx; // PARAM: used as pfx, calculated from (spoofNrEnc & 0xFFFFFF1F). BUG: weird way to denote "first 29 prefix bits" in "dark side" paper. Perhaps I see the world different
uint32_t spoofNrEnc; // {Nr} value which we will be using to make the tag respond with 4 bits
uint32_t spoofArEnc; // PARAM: used as rr
uint8_t spoofParBitsEnc; // parity bits we are trying to guess for the first time
uint8_t spoofNackEnc; // store here the encrypted NACK returned first time we match the parity bits
uint8_t spoofKs; // store here the keystream ks used for encryptying spoofNackEnc, specifically spoofKs = spoofNackEnc ^ 0x5
// STAGE2 data for "dark side" and lsfr_common_prefix()
int current_out_of_8; // starting from -1 until we find parity for chosen spoofNrEnc,spoofArEnc
uint8_t parBitsCrntCombination[MFCUK_DARKSIDE_MAX_LEVELS]; // Loops over 32 combinations of the last 5 parity bits which generated the 4 bit NACK in STAGE1
uint32_t nrEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // the 29 bits constant prefix, varying only 3 bits, thus 8 possible values
uint32_t arEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // the same reader response as spoofArEnc; redundant but... :)
uint8_t ks[MFCUK_DARKSIDE_MAX_LEVELS]; // PARAM: used as ks, obtained as (ks[i] = nackEnc[i] ^ 0x5)
uint8_t nackEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // store here the encrypted 4 bits values which tag responded
uint8_t parBits[MFCUK_DARKSIDE_MAX_LEVELS]; // store here the values based on spoofParBitsEnc, varying only last 5 bits
uint8_t parBitsArr[MFCUK_DARKSIDE_MAX_LEVELS][8]; // PARAM: used as par, contains value of parBits byte-bit values just splitted out one bit per byte thus second pair of braces [8]
// STAGE2 data for "dark side" and lsfr_common_prefix()
int current_out_of_8; // starting from -1 until we find parity for chosen spoofNrEnc,spoofArEnc
uint8_t parBitsCrntCombination[MFCUK_DARKSIDE_MAX_LEVELS]; // Loops over 32 combinations of the last 5 parity bits which generated the 4 bit NACK in STAGE1
uint32_t nrEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // the 29 bits constant prefix, varying only 3 bits, thus 8 possible values
uint32_t arEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // the same reader response as spoofArEnc; redundant but... :)
uint8_t ks[MFCUK_DARKSIDE_MAX_LEVELS]; // PARAM: used as ks, obtained as (ks[i] = nackEnc[i] ^ 0x5)
uint8_t nackEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // store here the encrypted 4 bits values which tag responded
uint8_t parBits[MFCUK_DARKSIDE_MAX_LEVELS]; // store here the values based on spoofParBitsEnc, varying only last 5 bits
uint8_t parBitsArr[MFCUK_DARKSIDE_MAX_LEVELS][8]; // PARAM: used as par, contains value of parBits byte-bit values just splitted out one bit per byte thus second pair of braces [8]
} tag_nonce_entry_t;
#endif // _MFCUK_KEYRECOVERY_DARKSIDE_H_

View File

@ -5,23 +5,23 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_finger.c
@ -38,174 +38,150 @@
#include "mfcuk_finger.h"
mfcuk_finger_tmpl_entry mfcuk_finger_db[] =
{
{ "./data/tmpls_fingerprints/mfcuk_tmpl_skgt.mfd", "Sofia SKGT", mfcuk_finger_default_comparator, mfcuk_finger_skgt_decoder, NULL },
{ "./data/tmpls_fingerprints/mfcuk_tmpl_ratb.mfd", "Bucharest RATB", mfcuk_finger_default_comparator, mfcuk_finger_default_decoder, NULL },
{ "./data/tmpls_fingerprints/mfcuk_tmpl_oyster.mfd", "London OYSTER", mfcuk_finger_default_comparator, mfcuk_finger_default_decoder, NULL },
mfcuk_finger_tmpl_entry mfcuk_finger_db[] = {
{ "./data/tmpls_fingerprints/mfcuk_tmpl_skgt.mfd", "Sofia SKGT", mfcuk_finger_default_comparator, mfcuk_finger_skgt_decoder, NULL },
{ "./data/tmpls_fingerprints/mfcuk_tmpl_ratb.mfd", "Bucharest RATB", mfcuk_finger_default_comparator, mfcuk_finger_default_decoder, NULL },
{ "./data/tmpls_fingerprints/mfcuk_tmpl_oyster.mfd", "London OYSTER", mfcuk_finger_default_comparator, mfcuk_finger_default_decoder, NULL },
};
int mfcuk_finger_db_entries = sizeof(mfcuk_finger_db)/sizeof(mfcuk_finger_db[0]);
int mfcuk_finger_db_entries = sizeof(mfcuk_finger_db) / sizeof(mfcuk_finger_db[0]);
int mfcuk_finger_default_decoder(mifare_classic_tag *dump)
{
if (!dump)
{
fprintf(stderr, "ERROR: cannot decode a NULL pointer :)\n");
return 0;
}
printf("UID:\t%02x%02x%02x%02x\n", dump->amb[0].mbm.abtUID[0], dump->amb[0].mbm.abtUID[1], dump->amb[0].mbm.abtUID[2], dump->amb[0].mbm.abtUID[3]);
printf("TYPE:\t%02x\n", dump->amb[0].mbm.btUnknown);
return 1;
if (!dump) {
fprintf(stderr, "ERROR: cannot decode a NULL pointer :)\n");
return 0;
}
printf("UID:\t%02x%02x%02x%02x\n", dump->amb[0].mbm.abtUID[0], dump->amb[0].mbm.abtUID[1], dump->amb[0].mbm.abtUID[2], dump->amb[0].mbm.abtUID[3]);
printf("TYPE:\t%02x\n", dump->amb[0].mbm.btUnknown);
return 1;
}
// Yes, I know C++ class inheritance would perfectly fit the decoders/comparators... Though C is more to my heart. Anyone to rewrite in C++?
int mfcuk_finger_skgt_decoder(mifare_classic_tag *dump)
{
if (!dump)
{
fprintf(stderr, "ERROR: cannot decode a NULL pointer :)\n");
return 0;
}
printf("Bulgaria/Sofia/SKGT public transport card information decoder (info credits to Andy)\n");
mfcuk_finger_default_decoder(dump);
printf("LAST TRAVEL DATA\n");
// TODO: get proper information
return 1;
if (!dump) {
fprintf(stderr, "ERROR: cannot decode a NULL pointer :)\n");
return 0;
}
printf("Bulgaria/Sofia/SKGT public transport card information decoder (info credits to Andy)\n");
mfcuk_finger_default_decoder(dump);
printf("LAST TRAVEL DATA\n");
// TODO: get proper information
return 1;
}
int mfcuk_finger_default_comparator(mifare_classic_tag *dump, mfcuk_finger_template *tmpl, float *score)
{
int max_bytes = 0;
int i;
int num_bytes_tomatch = 0;
int num_bytes_matched = 0;
if ( (!dump) || (!tmpl) || (!score) )
{
return 0;
int max_bytes = 0;
int i;
int num_bytes_tomatch = 0;
int num_bytes_matched = 0;
if ((!dump) || (!tmpl) || (!score)) {
return 0;
}
if (IS_MIFARE_CLASSIC_1K_TAG(dump)) {
max_bytes = MIFARE_CLASSIC_BYTES_PER_BLOCK * MIFARE_CLASSIC_1K_MAX_BLOCKS;
} else if (IS_MIFARE_CLASSIC_4K_TAG(dump)) {
max_bytes = MIFARE_CLASSIC_BYTES_PER_BLOCK * MIFARE_CLASSIC_4K_MAX_BLOCKS;
} else {
return 0;
}
for (i = 0; i < max_bytes; i++) {
if (((char *)(&tmpl->mask))[i] == 0x0) {
continue;
}
if (IS_MIFARE_CLASSIC_1K_TAG(dump))
{
max_bytes = MIFARE_CLASSIC_BYTES_PER_BLOCK * MIFARE_CLASSIC_1K_MAX_BLOCKS;
num_bytes_tomatch++;
if (((char *)(&tmpl->values))[i] == ((char *)dump)[i]) {
num_bytes_matched++;
}
else if (IS_MIFARE_CLASSIC_4K_TAG(dump))
{
max_bytes = MIFARE_CLASSIC_BYTES_PER_BLOCK * MIFARE_CLASSIC_4K_MAX_BLOCKS;
}
else
{
return 0;
}
for (i=0; i<max_bytes; i++)
{
if ( ((char *)(&tmpl->mask))[i] == 0x0 )
{
continue;
}
num_bytes_tomatch++;
if ( ((char *)(&tmpl->values))[i] == ((char *)dump)[i] )
{
num_bytes_matched++;
}
}
if (num_bytes_tomatch == 0)
{
return 0;
}
else
{
*score = (float)(num_bytes_matched)/num_bytes_tomatch;
}
return 1;
}
if (num_bytes_tomatch == 0) {
return 0;
} else {
*score = (float)(num_bytes_matched) / num_bytes_tomatch;
}
return 1;
}
int mfcuk_finger_load(void)
{
int i;
mifare_classic_tag mask;
mifare_classic_tag values;
FILE *fp = NULL;
size_t result = 0;
mfcuk_finger_template *tmpl_new = NULL;
int i;
mifare_classic_tag mask;
mifare_classic_tag values;
FILE *fp = NULL;
size_t result = 0;
mfcuk_finger_template *tmpl_new = NULL;
int template_loaded_count = 0;
for (i = 0; i<mfcuk_finger_db_entries; i++)
{
fp = fopen(mfcuk_finger_db[i].tmpl_filename, "rb");
if (!fp)
{
fprintf(stderr, "WARN: cannot open template file '%s'\n", mfcuk_finger_db[i].tmpl_filename);
continue;
}
// If not read exactly 1 record, something is wrong
if ( (result = fread((void *)(&mask), sizeof(mask), 1, fp)) != 1)
{
fprintf(stderr, "WARN: cannot read MASK from template file '%s'\n", mfcuk_finger_db[i].tmpl_filename);
fclose(fp);
continue;
}
// If not read exactly 1 record, something is wrong
if ( (result = fread((void *)(&values), sizeof(values), 1, fp)) != 1)
{
fprintf(stderr, "WARN: cannot read VALUES template file '%s'\n", mfcuk_finger_db[i].tmpl_filename);
fclose(fp);
continue;
}
if (mfcuk_finger_db[i].tmpl_data == NULL)
{
if ( (tmpl_new = (mfcuk_finger_template *) malloc(sizeof(mfcuk_finger_template))) == NULL)
{
fprintf(stderr, "WARN: cannot allocate memory to template record %d\n", i);
fclose(fp);
continue;
}
memcpy( &(tmpl_new->mask), &(mask), sizeof(mask));
memcpy( &(tmpl_new->values), &(values), sizeof(values));
mfcuk_finger_db[i].tmpl_data = tmpl_new;
template_loaded_count++;
}
if (fp)
{
fclose(fp);
fp = NULL;
}
int template_loaded_count = 0;
for (i = 0; i < mfcuk_finger_db_entries; i++) {
fp = fopen(mfcuk_finger_db[i].tmpl_filename, "rb");
if (!fp) {
fprintf(stderr, "WARN: cannot open template file '%s'\n", mfcuk_finger_db[i].tmpl_filename);
continue;
}
return template_loaded_count;
// If not read exactly 1 record, something is wrong
if ((result = fread((void *)(&mask), sizeof(mask), 1, fp)) != 1) {
fprintf(stderr, "WARN: cannot read MASK from template file '%s'\n", mfcuk_finger_db[i].tmpl_filename);
fclose(fp);
continue;
}
// If not read exactly 1 record, something is wrong
if ((result = fread((void *)(&values), sizeof(values), 1, fp)) != 1) {
fprintf(stderr, "WARN: cannot read VALUES template file '%s'\n", mfcuk_finger_db[i].tmpl_filename);
fclose(fp);
continue;
}
if (mfcuk_finger_db[i].tmpl_data == NULL) {
if ((tmpl_new = (mfcuk_finger_template *) malloc(sizeof(mfcuk_finger_template))) == NULL) {
fprintf(stderr, "WARN: cannot allocate memory to template record %d\n", i);
fclose(fp);
continue;
}
memcpy(&(tmpl_new->mask), &(mask), sizeof(mask));
memcpy(&(tmpl_new->values), &(values), sizeof(values));
mfcuk_finger_db[i].tmpl_data = tmpl_new;
template_loaded_count++;
}
if (fp) {
fclose(fp);
fp = NULL;
}
}
return template_loaded_count;
}
int mfcuk_finger_unload(void)
{
int i;
for (i = 0; i<mfcuk_finger_db_entries; i++)
{
if (mfcuk_finger_db[i].tmpl_data != NULL)
{
free(mfcuk_finger_db[i].tmpl_data);
mfcuk_finger_db[i].tmpl_data = NULL;
}
int i;
for (i = 0; i < mfcuk_finger_db_entries; i++) {
if (mfcuk_finger_db[i].tmpl_data != NULL) {
free(mfcuk_finger_db[i].tmpl_data);
mfcuk_finger_db[i].tmpl_data = NULL;
}
return 1;
}
return 1;
}

View File

@ -5,23 +5,23 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_finger.h
@ -45,24 +45,22 @@
#include "mfcuk_mifare.h"
// Wrapping an ugly template into an externally pleasant name. To implement proper template later.
typedef struct _mfcuk_finger_template_
{
mifare_classic_tag mask;
mifare_classic_tag values;
typedef struct _mfcuk_finger_template_ {
mifare_classic_tag mask;
mifare_classic_tag values;
} mfcuk_finger_template;
// Function type definition, to be used for custom decoders/comparators
typedef int (*mfcuk_finger_comparator) (mifare_classic_tag *dump, mfcuk_finger_template *tmpl, float *score);
typedef int (*mfcuk_finger_decoder) (mifare_classic_tag *dump);
typedef int (*mfcuk_finger_comparator)(mifare_classic_tag *dump, mfcuk_finger_template *tmpl, float *score);
typedef int (*mfcuk_finger_decoder)(mifare_classic_tag *dump);
// Naive implementation of a self-contained fingerprint database entry
typedef struct _mfcuk_finger_tmpl_entry_
{
const char *tmpl_filename;
const char *tmpl_name;
mfcuk_finger_comparator tmpl_comparison_func;
mfcuk_finger_decoder tmpl_decoder_func;
mfcuk_finger_template *tmpl_data;
typedef struct _mfcuk_finger_tmpl_entry_ {
const char *tmpl_filename;
const char *tmpl_name;
mfcuk_finger_comparator tmpl_comparison_func;
mfcuk_finger_decoder tmpl_decoder_func;
mfcuk_finger_template *tmpl_data;
} mfcuk_finger_tmpl_entry;
int mfcuk_finger_default_comparator(mifare_classic_tag *dump, mfcuk_finger_template *tmpl, float *score);

View File

@ -1,10 +1,10 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_mifare.c
@ -20,7 +20,7 @@
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_mifare.c
* @brief
* @brief
*/
/*
@ -40,485 +40,424 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "mfcuk_mifare.h"
// Default keys used as a *BIG* mistake in many applications - especially System Integrators should pay attention!
uint8_t mfcuk_default_keys[][MIFARE_CLASSIC_KEY_BYTELENGTH] =
{
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // Place-holder for current key to verify
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
{0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5},
{0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x4d, 0x3a, 0x99, 0xc3, 0x51, 0xdd},
{0x1a, 0x98, 0x2c, 0x7e, 0x45, 0x9a},
{0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7},
{0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff},
uint8_t mfcuk_default_keys[][MIFARE_CLASSIC_KEY_BYTELENGTH] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // Place-holder for current key to verify
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
{0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5},
{0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x4d, 0x3a, 0x99, 0xc3, 0x51, 0xdd},
{0x1a, 0x98, 0x2c, 0x7e, 0x45, 0x9a},
{0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7},
{0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff},
};
int mfcuk_default_keys_num = sizeof(mfcuk_default_keys)/sizeof(mfcuk_default_keys[0]);
int mfcuk_default_keys_num = sizeof(mfcuk_default_keys) / sizeof(mfcuk_default_keys[0]);
bool is_valid_block(uint8_t bTagType, uint32_t uiBlock)
{
if ( IS_MIFARE_CLASSIC_1K(bTagType) && (uiBlock < MIFARE_CLASSIC_1K_MAX_BLOCKS) )
{
return true;
}
if (IS_MIFARE_CLASSIC_1K(bTagType) && (uiBlock < MIFARE_CLASSIC_1K_MAX_BLOCKS)) {
return true;
}
if ( IS_MIFARE_CLASSIC_4K(bTagType) && (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS) )
{
return true;
}
if (IS_MIFARE_CLASSIC_4K(bTagType) && (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS)) {
return true;
}
return false;
return false;
}
bool is_valid_sector(uint8_t bTagType, uint32_t uiSector)
{
if ( IS_MIFARE_CLASSIC_1K(bTagType) && (uiSector < MIFARE_CLASSIC_1K_MAX_SECTORS) )
{
return true;
}
if (IS_MIFARE_CLASSIC_1K(bTagType) && (uiSector < MIFARE_CLASSIC_1K_MAX_SECTORS)) {
return true;
}
if ( IS_MIFARE_CLASSIC_4K(bTagType) && (uiSector < MIFARE_CLASSIC_4K_MAX_SECTORS) )
{
return true;
}
if (IS_MIFARE_CLASSIC_4K(bTagType) && (uiSector < MIFARE_CLASSIC_4K_MAX_SECTORS)) {
return true;
}
return false;
return false;
}
bool is_first_block(uint8_t bTagType, uint32_t uiBlock)
{
if ( !is_valid_block(bTagType, uiBlock) )
{
return false;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1)
{
// For Mifare Classic 1K, it will enter always here
return ( (uiBlock) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) == 0 );
}
else
{
// This branch will enter only for Mifare Classic 4K big sectors
return ( (uiBlock) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) == 0 );
}
// Should not reach here, but... never know
if (!is_valid_block(bTagType, uiBlock)) {
return false;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1) {
// For Mifare Classic 1K, it will enter always here
return ((uiBlock) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) == 0);
} else {
// This branch will enter only for Mifare Classic 4K big sectors
return ((uiBlock) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) == 0);
}
// Should not reach here, but... never know
return false;
}
bool is_trailer_block(uint8_t bTagType, uint32_t uiBlock)
{
if ( !is_valid_block(bTagType, uiBlock) )
{
return false;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1)
{
// For Mifare Classic 1K, it will enter always here
return ( (uiBlock+1) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) == 0 );
}
else
{
// This branch will enter only for Mifare Classic 4K big sectors
return ( (uiBlock+1) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) == 0 );
}
// Should not reach here, but... never know
if (!is_valid_block(bTagType, uiBlock)) {
return false;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1) {
// For Mifare Classic 1K, it will enter always here
return ((uiBlock + 1) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) == 0);
} else {
// This branch will enter only for Mifare Classic 4K big sectors
return ((uiBlock + 1) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) == 0);
}
// Should not reach here, but... never know
return false;
}
uint32_t get_first_block(uint8_t bTagType, uint32_t uiBlock)
{
if ( !is_valid_block(bTagType, uiBlock) )
{
return MIFARE_CLASSIC_INVALID_BLOCK;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1)
{
// Integer divide, then integer multiply
return (uiBlock/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1;
}
else
{
uint32_t tmp = uiBlock - MIFARE_CLASSIC_4K_MAX_BLOCKS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2;
}
// Should not reach here, but... never know
if (!is_valid_block(bTagType, uiBlock)) {
return MIFARE_CLASSIC_INVALID_BLOCK;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1) {
// Integer divide, then integer multiply
return (uiBlock / MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1;
} else {
uint32_t tmp = uiBlock - MIFARE_CLASSIC_4K_MAX_BLOCKS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp / MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2;
}
// Should not reach here, but... never know
return MIFARE_CLASSIC_INVALID_BLOCK;
}
uint32_t get_trailer_block(uint8_t bTagType, uint32_t uiBlock)
{
if ( !is_valid_block(bTagType, uiBlock) )
{
return MIFARE_CLASSIC_INVALID_BLOCK;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1)
{
// Integer divide, then integer multiply
return (uiBlock/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1 + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1-1);
}
else
{
uint32_t tmp = uiBlock - MIFARE_CLASSIC_4K_MAX_BLOCKS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2 + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2-1);
}
// Should not reach here, but... never know
if (!is_valid_block(bTagType, uiBlock)) {
return MIFARE_CLASSIC_INVALID_BLOCK;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1) {
// Integer divide, then integer multiply
return (uiBlock / MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1 + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1 - 1);
} else {
uint32_t tmp = uiBlock - MIFARE_CLASSIC_4K_MAX_BLOCKS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp / MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2 + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2 - 1);
}
// Should not reach here, but... never know
return MIFARE_CLASSIC_INVALID_BLOCK;
}
bool is_big_sector(uint8_t bTagType, uint32_t uiSector)
{
if ( !is_valid_sector(bTagType, uiSector) )
{
return false;
}
if (uiSector >= MIFARE_CLASSIC_4K_MAX_SECTORS1)
{
return true;
}
if (!is_valid_sector(bTagType, uiSector)) {
return false;
}
if (uiSector >= MIFARE_CLASSIC_4K_MAX_SECTORS1) {
return true;
}
return false;
}
uint32_t get_first_block_for_sector(uint8_t bTagType, uint32_t uiSector)
{
if ( !is_valid_sector(bTagType, uiSector) )
{
return MIFARE_CLASSIC_INVALID_BLOCK;
}
if (uiSector < MIFARE_CLASSIC_4K_MAX_SECTORS1)
{
// For Mifare Classic 1K, it will enter always here
return (uiSector * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1);
}
else
{
// For Mifare Classic 4K big sectors it will enter always here
uint32_t tmp = uiSector - MIFARE_CLASSIC_4K_MAX_SECTORS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2);
}
// Should not reach here, but... never know
if (!is_valid_sector(bTagType, uiSector)) {
return MIFARE_CLASSIC_INVALID_BLOCK;
}
if (uiSector < MIFARE_CLASSIC_4K_MAX_SECTORS1) {
// For Mifare Classic 1K, it will enter always here
return (uiSector * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1);
} else {
// For Mifare Classic 4K big sectors it will enter always here
uint32_t tmp = uiSector - MIFARE_CLASSIC_4K_MAX_SECTORS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2);
}
// Should not reach here, but... never know
return MIFARE_CLASSIC_INVALID_BLOCK;
}
uint32_t get_trailer_block_for_sector(uint8_t bTagType, uint32_t uiSector)
{
if ( !is_valid_sector(bTagType, uiSector) )
{
return MIFARE_CLASSIC_INVALID_BLOCK;
}
if (uiSector < MIFARE_CLASSIC_4K_MAX_SECTORS1)
{
// For Mifare Classic 1K, it will enter always here
return (uiSector * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1-1);
}
else
{
// For Mifare Classic 4K big sectors it will enter always here
uint32_t tmp = uiSector - MIFARE_CLASSIC_4K_MAX_SECTORS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2-1);
}
// Should not reach here, but... never know
if (!is_valid_sector(bTagType, uiSector)) {
return MIFARE_CLASSIC_INVALID_BLOCK;
}
if (uiSector < MIFARE_CLASSIC_4K_MAX_SECTORS1) {
// For Mifare Classic 1K, it will enter always here
return (uiSector * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1 - 1);
} else {
// For Mifare Classic 4K big sectors it will enter always here
uint32_t tmp = uiSector - MIFARE_CLASSIC_4K_MAX_SECTORS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2 - 1);
}
// Should not reach here, but... never know
return MIFARE_CLASSIC_INVALID_BLOCK;
}
uint32_t get_sector_for_block(uint8_t bTagType, uint32_t uiBlock)
{
if ( !is_valid_block(bTagType, uiBlock) )
{
return MIFARE_CLASSIC_INVALID_BLOCK;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1)
{
// For Mifare Classic 1K, it will enter always here
return (uiBlock/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1);
}
else
{
uint32_t tmp = uiBlock - MIFARE_CLASSIC_4K_MAX_BLOCKS1;
return MIFARE_CLASSIC_4K_MAX_SECTORS1 + (tmp/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2);
}
// Should not reach here, but... never know
if (!is_valid_block(bTagType, uiBlock)) {
return MIFARE_CLASSIC_INVALID_BLOCK;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1) {
// For Mifare Classic 1K, it will enter always here
return (uiBlock / MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1);
} else {
uint32_t tmp = uiBlock - MIFARE_CLASSIC_4K_MAX_BLOCKS1;
return MIFARE_CLASSIC_4K_MAX_SECTORS1 + (tmp / MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2);
}
// Should not reach here, but... never know
return MIFARE_CLASSIC_INVALID_BLOCK;
}
// Test case function for checking correct functionality of the block/sector is_ ang get_ functions
void test_mifare_classic_blocks_sectors_functions(uint8_t bTagType)
{
uint32_t i;
uint32_t max_blocks, max_sectors;
uint32_t i;
uint32_t max_blocks, max_sectors;
if ( IS_MIFARE_CLASSIC_1K(bTagType) )
{
printf("\nMIFARE CLASSIC 1K\n");
max_blocks = MIFARE_CLASSIC_1K_MAX_BLOCKS;
max_sectors = MIFARE_CLASSIC_1K_MAX_SECTORS;
}
else if ( IS_MIFARE_CLASSIC_4K(bTagType) )
{
printf("\nMIFARE CLASSIC 4K\n");
max_blocks = MIFARE_CLASSIC_4K_MAX_BLOCKS;
max_sectors = MIFARE_CLASSIC_4K_MAX_SECTORS;
}
else
{
return;
}
if (IS_MIFARE_CLASSIC_1K(bTagType)) {
printf("\nMIFARE CLASSIC 1K\n");
max_blocks = MIFARE_CLASSIC_1K_MAX_BLOCKS;
max_sectors = MIFARE_CLASSIC_1K_MAX_SECTORS;
} else if (IS_MIFARE_CLASSIC_4K(bTagType)) {
printf("\nMIFARE CLASSIC 4K\n");
max_blocks = MIFARE_CLASSIC_4K_MAX_BLOCKS;
max_sectors = MIFARE_CLASSIC_4K_MAX_SECTORS;
} else {
return;
}
// Include one invalid block, that is why we add +1
for (i = 0; i<max_blocks+1; i++)
{
printf("BLOCK %d\n", i);
printf("\t is_valid_block: %c\n", (is_valid_block(bTagType, i)?'Y':'N') );
printf("\t is_first_block: %c\n", (is_first_block(bTagType, i)?'Y':'N') );
printf("\t is_trailer_block: %c\n", (is_trailer_block(bTagType, i)?'Y':'N') );
printf("\t get_first_block: %d\n", get_first_block(bTagType, i));
printf("\t get_trailer_block: %d\n", get_trailer_block(bTagType, i));
printf("\t get_sector_for_block: %d\n", get_sector_for_block(bTagType, i));
}
// Include one invalid block, that is why we add +1
for (i = 0; i < max_blocks + 1; i++) {
printf("BLOCK %d\n", i);
printf("\t is_valid_block: %c\n", (is_valid_block(bTagType, i) ? 'Y' : 'N'));
printf("\t is_first_block: %c\n", (is_first_block(bTagType, i) ? 'Y' : 'N'));
printf("\t is_trailer_block: %c\n", (is_trailer_block(bTagType, i) ? 'Y' : 'N'));
printf("\t get_first_block: %d\n", get_first_block(bTagType, i));
printf("\t get_trailer_block: %d\n", get_trailer_block(bTagType, i));
printf("\t get_sector_for_block: %d\n", get_sector_for_block(bTagType, i));
}
// Include one invalid sector, that is why we add +1
for (i = 0; i<max_sectors+1; i++)
{
printf("SECTOR %d\n", i);
printf("\t is_valid_sector: %c\n", (is_valid_sector(bTagType, i)?'Y':'N') );
printf("\t is_big_sector: %c\n", (is_big_sector(bTagType, i)?'Y':'N') );
printf("\t get_first_block_for_sector: %d\n", get_first_block_for_sector(bTagType, i) );
printf("\t get_trailer_block_for_sector: %d\n", get_trailer_block_for_sector(bTagType, i) );
}
// Include one invalid sector, that is why we add +1
for (i = 0; i < max_sectors + 1; i++) {
printf("SECTOR %d\n", i);
printf("\t is_valid_sector: %c\n", (is_valid_sector(bTagType, i) ? 'Y' : 'N'));
printf("\t is_big_sector: %c\n", (is_big_sector(bTagType, i) ? 'Y' : 'N'));
printf("\t get_first_block_for_sector: %d\n", get_first_block_for_sector(bTagType, i));
printf("\t get_trailer_block_for_sector: %d\n", get_trailer_block_for_sector(bTagType, i));
}
}
bool mfcuk_save_tag_dump(const char *filename, mifare_classic_tag *tag)
{
FILE *fp;
size_t result;
FILE *fp;
size_t result;
fp = fopen(filename, "wb");
if (!fp)
{
return false;
}
fp = fopen(filename, "wb");
if (!fp) {
return false;
}
// Expect to write 1 record
result = fwrite((void *) tag, sizeof(*tag), 1, fp);
// If not written exactly 1 record, something is wrong
if (result != 1)
{
fclose(fp);
return false;
}
// Expect to write 1 record
result = fwrite((void *) tag, sizeof(*tag), 1, fp);
// If not written exactly 1 record, something is wrong
if (result != 1) {
fclose(fp);
return true;
return false;
}
fclose(fp);
return true;
}
bool mfcuk_save_tag_dump_ext(const char *filename, mifare_classic_tag_ext *tag_ext)
{
FILE *fp;
size_t result;
FILE *fp;
size_t result;
fp = fopen(filename, "wb");
if (!fp)
{
return false;
}
fp = fopen(filename, "wb");
if (!fp) {
return false;
}
// Expect to write 1 record
result = fwrite((void *) tag_ext, sizeof(*tag_ext), 1, fp);
// If not written exactly 1 record, something is wrong
if (result != 1)
{
fclose(fp);
return false;
}
// Expect to write 1 record
result = fwrite((void *) tag_ext, sizeof(*tag_ext), 1, fp);
// If not written exactly 1 record, something is wrong
if (result != 1) {
fclose(fp);
return true;
return false;
}
fclose(fp);
return true;
}
bool mfcuk_load_tag_dump(const char *filename, mifare_classic_tag *tag)
{
FILE *fp;
size_t result;
FILE *fp;
size_t result;
fp = fopen(filename, "rb");
if (!fp)
{
return false;
}
fp = fopen(filename, "rb");
if (!fp) {
return false;
}
// Expect to read 1 record
result = fread((void *) tag, sizeof(*tag), 1, fp);
// If not read exactly 1 record, something is wrong
if (result != 1)
{
fclose(fp);
return false;
}
// Expect to read 1 record
result = fread((void *) tag, sizeof(*tag), 1, fp);
// If not read exactly 1 record, something is wrong
if (result != 1) {
fclose(fp);
return true;
return false;
}
fclose(fp);
return true;
}
bool mfcuk_load_tag_dump_ext(const char *filename, mifare_classic_tag_ext *tag_ext)
{
FILE *fp;
size_t result;
FILE *fp;
size_t result;
fp = fopen(filename, "rb");
if (!fp)
{
return false;
}
fp = fopen(filename, "rb");
if (!fp) {
return false;
}
// Expect to read 1 record
result = fread((void *) tag_ext, sizeof(*tag_ext), 1, fp);
// If not read exactly 1 record, something is wrong
if (result != sizeof(*tag_ext))
{
fclose(fp);
return false;
}
// Expect to read 1 record
result = fread((void *) tag_ext, sizeof(*tag_ext), 1, fp);
// If not read exactly 1 record, something is wrong
if (result != sizeof(*tag_ext)) {
fclose(fp);
return true;
return false;
}
fclose(fp);
return true;
}
void print_mifare_classic_tag_keys(const char *title, mifare_classic_tag *tag)
{
uint32_t i, max_blocks, trailer_block;
uint8_t bTagType;
mifare_classic_block_trailer *ptr_trailer = NULL;
if (!tag)
{
return;
}
bTagType = tag->amb->mbm.btUnknown;
if ( !IS_MIFARE_CLASSIC_1K(bTagType) && !IS_MIFARE_CLASSIC_4K(bTagType) )
{
return;
}
printf("%s - UID %02x %02x %02x %02x - TYPE 0x%02x (%s)\n",
title, tag->amb->mbm.abtUID[0], tag->amb->mbm.abtUID[1], tag->amb->mbm.abtUID[2], tag->amb->mbm.abtUID[3], bTagType,
(IS_MIFARE_CLASSIC_1K(bTagType)?(MIFARE_CLASSIC_1K_NAME):(IS_MIFARE_CLASSIC_4K(bTagType)?(MIFARE_CLASSIC_4K_NAME):(MIFARE_CLASSIC_UNKN_NAME)))
);
printf("-------------------------------------------------------\n");
printf("Sector\t| Key A\t| AC bits\t| Key B\n");
printf("-------------------------------------------------------\n");
if ( IS_MIFARE_CLASSIC_1K(tag->amb->mbm.btUnknown) )
{
max_blocks = MIFARE_CLASSIC_1K_MAX_BLOCKS;
}
else
{
max_blocks = MIFARE_CLASSIC_4K_MAX_BLOCKS;
}
for (i=0; i<max_blocks; i++)
{
trailer_block = get_trailer_block(bTagType, i);
if ( !is_valid_block(bTagType, trailer_block) )
{
break;
}
ptr_trailer = (mifare_classic_block_trailer *) ((char *)tag + (trailer_block * MIFARE_CLASSIC_BYTES_PER_BLOCK) );
printf("%d\t| %02x%02x%02x%02x%02x%02x\t| %02x%02x%02x%02x\t| %02x%02x%02x%02x%02x%02x\n",
get_sector_for_block(bTagType, trailer_block),
ptr_trailer->abtKeyA[0], ptr_trailer->abtKeyA[1], ptr_trailer->abtKeyA[2],
ptr_trailer->abtKeyA[3], ptr_trailer->abtKeyA[4], ptr_trailer->abtKeyA[5],
ptr_trailer->abtAccessBits[0], ptr_trailer->abtAccessBits[1], ptr_trailer->abtAccessBits[2], ptr_trailer->abtAccessBits[3],
ptr_trailer->abtKeyB[0], ptr_trailer->abtKeyB[1], ptr_trailer->abtKeyB[2],
ptr_trailer->abtKeyB[3], ptr_trailer->abtKeyB[4], ptr_trailer->abtKeyB[5]
);
// Go beyond current trailer block, i.e. go to next sector
i = trailer_block;
}
printf("\n");
uint32_t i, max_blocks, trailer_block;
uint8_t bTagType;
mifare_classic_block_trailer *ptr_trailer = NULL;
if (!tag) {
return;
}
bTagType = tag->amb->mbm.btUnknown;
if (!IS_MIFARE_CLASSIC_1K(bTagType) && !IS_MIFARE_CLASSIC_4K(bTagType)) {
return;
}
printf("%s - UID %02x %02x %02x %02x - TYPE 0x%02x (%s)\n",
title, tag->amb->mbm.abtUID[0], tag->amb->mbm.abtUID[1], tag->amb->mbm.abtUID[2], tag->amb->mbm.abtUID[3], bTagType,
(IS_MIFARE_CLASSIC_1K(bTagType) ? (MIFARE_CLASSIC_1K_NAME) : (IS_MIFARE_CLASSIC_4K(bTagType) ? (MIFARE_CLASSIC_4K_NAME) : (MIFARE_CLASSIC_UNKN_NAME)))
);
printf("-------------------------------------------------------\n");
printf("Sector\t| Key A\t| AC bits\t| Key B\n");
printf("-------------------------------------------------------\n");
if (IS_MIFARE_CLASSIC_1K(tag->amb->mbm.btUnknown)) {
max_blocks = MIFARE_CLASSIC_1K_MAX_BLOCKS;
} else {
max_blocks = MIFARE_CLASSIC_4K_MAX_BLOCKS;
}
for (i = 0; i < max_blocks; i++) {
trailer_block = get_trailer_block(bTagType, i);
if (!is_valid_block(bTagType, trailer_block)) {
break;
}
ptr_trailer = (mifare_classic_block_trailer *)((char *)tag + (trailer_block * MIFARE_CLASSIC_BYTES_PER_BLOCK));
printf("%d\t| %02x%02x%02x%02x%02x%02x\t| %02x%02x%02x%02x\t| %02x%02x%02x%02x%02x%02x\n",
get_sector_for_block(bTagType, trailer_block),
ptr_trailer->abtKeyA[0], ptr_trailer->abtKeyA[1], ptr_trailer->abtKeyA[2],
ptr_trailer->abtKeyA[3], ptr_trailer->abtKeyA[4], ptr_trailer->abtKeyA[5],
ptr_trailer->abtAccessBits[0], ptr_trailer->abtAccessBits[1], ptr_trailer->abtAccessBits[2], ptr_trailer->abtAccessBits[3],
ptr_trailer->abtKeyB[0], ptr_trailer->abtKeyB[1], ptr_trailer->abtKeyB[2],
ptr_trailer->abtKeyB[3], ptr_trailer->abtKeyB[4], ptr_trailer->abtKeyB[5]
);
// Go beyond current trailer block, i.e. go to next sector
i = trailer_block;
}
printf("\n");
return;
}
bool mfcuk_key_uint64_to_arr(const uint64_t *ui64Key, uint8_t *arr6Key)
{
int i;
int i;
if ( !ui64Key || !arr6Key )
{
return false;
}
if (!ui64Key || !arr6Key) {
return false;
}
for (i = 0; i<MIFARE_CLASSIC_KEY_BYTELENGTH; i++)
{
arr6Key[i] = (uint8_t) (((*ui64Key) >> 8*(MIFARE_CLASSIC_KEY_BYTELENGTH - i - 1)) & 0xFF);
}
for (i = 0; i < MIFARE_CLASSIC_KEY_BYTELENGTH; i++) {
arr6Key[i] = (uint8_t)(((*ui64Key) >> 8 * (MIFARE_CLASSIC_KEY_BYTELENGTH - i - 1)) & 0xFF);
}
return true;
return true;
}
bool mfcuk_key_arr_to_uint64(const uint8_t *arr6Key, uint64_t *ui64Key)
{
uint64_t key = 0;
int i;
uint64_t key = 0;
int i;
if ( !ui64Key || !arr6Key )
{
return false;
}
if (!ui64Key || !arr6Key) {
return false;
}
for (i = 0; i<MIFARE_CLASSIC_KEY_BYTELENGTH; i++, key <<= 8)
{
key |= arr6Key[i];
}
key >>= 8;
for (i = 0; i < MIFARE_CLASSIC_KEY_BYTELENGTH; i++, key <<= 8) {
key |= arr6Key[i];
}
key >>= 8;
*ui64Key = key;
*ui64Key = key;
return true;
return true;
}

View File

@ -1,10 +1,10 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_mifare.h
@ -20,7 +20,7 @@
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_mifare.h
* @brief
* @brief
*/
/*
@ -40,14 +40,14 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _MFCUK_MIFARE_H_
@ -100,17 +100,17 @@
// Define an extended type of dump, basically a wrapper dump around basic tag dump
typedef struct {
uint32_t uid; // looks redundant, but it is easier to use dmp.uid instead of dmp.amb.mbm.abtUID[0]...[3]
uint8_t type; // ATS/SAK from ti.tia.btSak, example 0x08h for Mifare 1K, 0x18h for Mifare 4K
char datetime[14]; // non-zero-terminated date-time of dump in format YYYYMMDDH24MISS, example 20091114231541 - 14 Nov 2009, 11:15:41 PM
char description[MFCUK_EXTENDED_DESCRIPTION_LENGTH]; // a description of the tag dump, example "RATB_DUMP_BEFORE_PAY"
mifare_classic_tag tag_basic;
uint32_t uid; // looks redundant, but it is easier to use dmp.uid instead of dmp.amb.mbm.abtUID[0]...[3]
uint8_t type; // ATS/SAK from ti.tia.btSak, example 0x08h for Mifare 1K, 0x18h for Mifare 4K
char datetime[14]; // non-zero-terminated date-time of dump in format YYYYMMDDH24MISS, example 20091114231541 - 14 Nov 2009, 11:15:41 PM
char description[MFCUK_EXTENDED_DESCRIPTION_LENGTH]; // a description of the tag dump, example "RATB_DUMP_BEFORE_PAY"
mifare_classic_tag tag_basic;
} mifare_classic_tag_ext;
// Define type of keys (A or B) in NXP notation
typedef enum {
keyA = 0x60,
keyB = 0x61,
keyA = 0x60,
keyB = 0x61,
} mifare_key_type;
// Default keys used as a *BIG* mistake in many applications - especially System Integrators should pay attention!

View File

@ -1,10 +1,10 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_utils.c
@ -15,7 +15,7 @@
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_utils.c
* @brief
* @brief
*/
/*
@ -35,20 +35,20 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "mfcuk_utils.h"
#ifdef __STDC__
struct timeval global_timeout;
struct timeval global_timeout;
#endif
/*
@ -65,17 +65,17 @@ The below code is just an optimization of the algorithm. Maxim Yegorushkin
/*inline*/
int is_hex(char c)
{
return (c >= '0' && c <= '9') || ((c | 0x20) >= 'a' && (c | 0x20) <= 'f');
return (c >= '0' && c <= '9') || ((c | 0x20) >= 'a' && (c | 0x20) <= 'f');
}
/*inline*/
unsigned char hex2bin(unsigned char h, unsigned char l)
{
h |= 0x20; // to lower
h -= 0x30;
h -= -(h > 9) & 0x27;
l |= 0x20;
l -= 0x30;
l -= -(l > 9) & 0x27;
return h << 4 | l;
h |= 0x20; // to lower
h -= 0x30;
h -= -(h > 9) & 0x27;
l |= 0x20;
l -= 0x30;
l -= -(l > 9) & 0x27;
return h << 4 | l;
}

View File

@ -1,10 +1,10 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_utils.h
@ -15,7 +15,7 @@
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_utils.h/
* @brief
* @brief
*/
/*
@ -35,14 +35,14 @@
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _MFCUK_UTILS_H_
@ -53,28 +53,28 @@
#include <string.h>
#ifdef WIN32
#define NOMINMAX
#include "windows.h"
#include "xgetopt.h"
#define NOMINMAX
#include "windows.h"
#include "xgetopt.h"
#elif __STDC__
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#endif
// "Portable" sleep(miliseconds)
#ifdef WIN32
#define sleep(x) Sleep(x)
#define sleep(x) Sleep(x)
#elif __STDC__
extern struct timeval global_timeout;
#define sleep(x) { global_timeout.tv_usec = 1000 * (x); select(0,NULL,NULL,NULL,&global_timeout); }
extern struct timeval global_timeout;
#define sleep(x) { global_timeout.tv_usec = 1000 * (x); select(0,NULL,NULL,NULL,&global_timeout); }
#endif
// "Portable" clear_screen() - NOTE: system performance penalty introduced
#ifdef WIN32
#define clear_screen() system("cls")
#define clear_screen() system("cls")
#elif __STDC__
#define clear_screen() system("sh -c clear")
#define clear_screen() system("sh -c clear")
#endif
/**

View File

@ -1,223 +1,214 @@
// XGetopt.cpp Version 1.2
//
// Author: Hans Dietrich
// hdietrich2@hotmail.com
//
// Description:
// XGetopt.cpp implements getopt(), a function to parse command lines.
//
// History
// Version 1.2 - 2003 May 17
// - Added Unicode support
//
// Version 1.1 - 2002 March 10
// - Added example to XGetopt.cpp module header
//
// This software is released into the public domain.
// You are free to use it in any way you like.
//
// This software is provided "as is" with no expressed
// or implied warranty. I accept no liability for any
// damage or loss of business that this software may cause.
//
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// if you are using precompiled headers then include this line:
//#include "stdafx.h"
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// if you are not using precompiled headers then include these lines:
//#include
//#include
//#include
///////////////////////////////////////////////////////////////////////////////
// XGetopt.cpp Version 1.2
//
// Author: Hans Dietrich
// hdietrich2@hotmail.com
//
// Description:
// XGetopt.cpp implements getopt(), a function to parse command lines.
//
// History
// Version 1.2 - 2003 May 17
// - Added Unicode support
//
// Version 1.1 - 2002 March 10
// - Added example to XGetopt.cpp module header
//
// This software is released into the public domain.
// You are free to use it in any way you like.
//
// This software is provided "as is" with no expressed
// or implied warranty. I accept no liability for any
// damage or loss of business that this software may cause.
//
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// if you are using precompiled headers then include this line:
//#include "stdafx.h"
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// if you are not using precompiled headers then include these lines:
//#include
//#include
//#include
///////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <string.h>
#include "xgetopt.h"
#include "xgetopt.h"
///////////////////////////////////////////////////////////////////////////////
//
// X G e t o p t . c p p
//
//
// NAME
// getopt -- parse command line options
//
// SYNOPSIS
// int getopt(int argc, char *argv[], char *optstring)
//
// extern char *optarg;
// extern int optind;
//
// DESCRIPTION
// The getopt() function parses the command line arguments. Its
// arguments argc and argv are the argument count and array as
// passed into the application on program invocation. In the case
// of Visual C++ programs, argc and argv are available via the
// variables __argc and __argv (double underscores), respectively.
// getopt returns the next option letter in argv that matches a
// letter in optstring. (Note: Unicode programs should use
// __targv instead of __argv. Also, all character and string
// literals should be enclosed in _T( ) ).
//
// optstring is a string of recognized option letters; if a letter
// is followed by a colon, the option is expected to have an argument
// that may or may not be separated from it by white space. optarg
// is set to point to the start of the option argument on return from
// getopt.
//
// Option letters may be combined, e.g., "-ab" is equivalent to
// "-a -b". Option letters are case sensitive.
//
// getopt places in the external variable optind the argv index
// of the next argument to be processed. optind is initialized
// to 0 before the first call to getopt.
//
// When all options have been processed (i.e., up to the first
// non-option argument), getopt returns EOF, optarg will point
// to the argument, and optind will be set to the argv index of
// the argument. If there are no non-option arguments, optarg
// will be set to NULL.
//
// The special option "--" may be used to delimit the end of the
// options; EOF will be returned, and "--" (and everything after it)
// will be skipped.
//
// RETURN VALUE
// For option letters contained in the string optstring, getopt
// will return the option letter. getopt returns a question mark (?)
// when it encounters an option letter not included in optstring.
// EOF is returned when processing is finished.
//
// BUGS
// 1) Long options are not supported.
// 2) The GNU double-colon extension is not supported.
// 3) The environment variable POSIXLY_CORRECT is not supported.
// 4) The + syntax is not supported.
// 5) The automatic permutation of arguments is not supported.
// 6) This implementation of getopt() returns EOF if an error is
// encountered, instead of -1 as the latest standard requires.
//
// EXAMPLE
// BOOL CMyApp::ProcessCommandLine(int argc, char *argv[])
// {
// int c;
//
// while ((c = getopt(argc, argv, _T("aBn:"))) != EOF)
// {
// switch (c)
// {
// case _T('a'):
// TRACE(_T("option a\n"));
// //
// // set some flag here
// //
// break;
//
// case _T('B'):
// TRACE( _T("option B\n"));
// //
// // set some other flag here
// //
// break;
//
// case _T('n'):
// TRACE(_T("option n: value=%d\n"), atoi(optarg));
// //
// // do something with value here
// //
// break;
//
// case _T('?'):
// TRACE(_T("ERROR: illegal option %s\n"), argv[optind-1]);
// return FALSE;
// break;
//
// default:
// TRACE(_T("WARNING: no handler for option %c\n"), c);
// return FALSE;
// break;
// }
// }
// //
// // check for non-option args here
// //
// return TRUE;
// }
//
///////////////////////////////////////////////////////////////////////////////
char *optarg; // global argument pointer
int optind = 0; // global argv index
int getopt(int argc, char *argv[], char *optstring)
{
char c = 0;
char *cp = NULL;
static char *next = NULL;
if (optind == 0)
next = NULL;
optarg = NULL;
if (next == NULL || *next == '\0')
{
if (optind == 0)
optind++;
if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0')
{
optarg = NULL;
if (optind < argc)
optarg = argv[optind];
return EOF;
}
if (strcmp(argv[optind], "--") == 0)
{
optind++;
optarg = NULL;
if (optind < argc)
optarg = argv[optind];
return EOF;
}
next = argv[optind];
next++; // skip past -
optind++;
}
c = *next++;
cp = strchr(optstring, c);
if (cp == NULL || c == ':')
return '?';
cp++;
if (*cp == ':')
{
if (*next != '\0')
{
optarg = next;
next = NULL;
}
else if (optind < argc)
{
optarg = argv[optind];
optind++;
}
else
{
return '?';
}
}
return c;
}
///////////////////////////////////////////////////////////////////////////////
//
// X G e t o p t . c p p
//
//
// NAME
// getopt -- parse command line options
//
// SYNOPSIS
// int getopt(int argc, char *argv[], char *optstring)
//
// extern char *optarg;
// extern int optind;
//
// DESCRIPTION
// The getopt() function parses the command line arguments. Its
// arguments argc and argv are the argument count and array as
// passed into the application on program invocation. In the case
// of Visual C++ programs, argc and argv are available via the
// variables __argc and __argv (double underscores), respectively.
// getopt returns the next option letter in argv that matches a
// letter in optstring. (Note: Unicode programs should use
// __targv instead of __argv. Also, all character and string
// literals should be enclosed in _T( ) ).
//
// optstring is a string of recognized option letters; if a letter
// is followed by a colon, the option is expected to have an argument
// that may or may not be separated from it by white space. optarg
// is set to point to the start of the option argument on return from
// getopt.
//
// Option letters may be combined, e.g., "-ab" is equivalent to
// "-a -b". Option letters are case sensitive.
//
// getopt places in the external variable optind the argv index
// of the next argument to be processed. optind is initialized
// to 0 before the first call to getopt.
//
// When all options have been processed (i.e., up to the first
// non-option argument), getopt returns EOF, optarg will point
// to the argument, and optind will be set to the argv index of
// the argument. If there are no non-option arguments, optarg
// will be set to NULL.
//
// The special option "--" may be used to delimit the end of the
// options; EOF will be returned, and "--" (and everything after it)
// will be skipped.
//
// RETURN VALUE
// For option letters contained in the string optstring, getopt
// will return the option letter. getopt returns a question mark (?)
// when it encounters an option letter not included in optstring.
// EOF is returned when processing is finished.
//
// BUGS
// 1) Long options are not supported.
// 2) The GNU double-colon extension is not supported.
// 3) The environment variable POSIXLY_CORRECT is not supported.
// 4) The + syntax is not supported.
// 5) The automatic permutation of arguments is not supported.
// 6) This implementation of getopt() returns EOF if an error is
// encountered, instead of -1 as the latest standard requires.
//
// EXAMPLE
// BOOL CMyApp::ProcessCommandLine(int argc, char *argv[])
// {
// int c;
//
// while ((c = getopt(argc, argv, _T("aBn:"))) != EOF)
// {
// switch (c)
// {
// case _T('a'):
// TRACE(_T("option a\n"));
// //
// // set some flag here
// //
// break;
//
// case _T('B'):
// TRACE( _T("option B\n"));
// //
// // set some other flag here
// //
// break;
//
// case _T('n'):
// TRACE(_T("option n: value=%d\n"), atoi(optarg));
// //
// // do something with value here
// //
// break;
//
// case _T('?'):
// TRACE(_T("ERROR: illegal option %s\n"), argv[optind-1]);
// return FALSE;
// break;
//
// default:
// TRACE(_T("WARNING: no handler for option %c\n"), c);
// return FALSE;
// break;
// }
// }
// //
// // check for non-option args here
// //
// return TRUE;
// }
//
///////////////////////////////////////////////////////////////////////////////
char *optarg; // global argument pointer
int optind = 0; // global argv index
int getopt(int argc, char *argv[], char *optstring)
{
char c = 0;
char *cp = NULL;
static char *next = NULL;
if (optind == 0)
next = NULL;
optarg = NULL;
if (next == NULL || *next == '\0') {
if (optind == 0)
optind++;
if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0') {
optarg = NULL;
if (optind < argc)
optarg = argv[optind];
return EOF;
}
if (strcmp(argv[optind], "--") == 0) {
optind++;
optarg = NULL;
if (optind < argc)
optarg = argv[optind];
return EOF;
}
next = argv[optind];
next++; // skip past -
optind++;
}
c = *next++;
cp = strchr(optstring, c);
if (cp == NULL || c == ':')
return '?';
cp++;
if (*cp == ':') {
if (*next != '\0') {
optarg = next;
next = NULL;
} else if (optind < argc) {
optarg = argv[optind];
optind++;
} else {
return '?';
}
}
return c;
}

View File

@ -1,23 +1,23 @@
// XGetopt.h Version 1.2
//
// Author: Hans Dietrich
// hdietrich2@hotmail.com
//
// This software is released into the public domain.
// You are free to use it in any way you like.
//
// This software is provided "as is" with no expressed
// or implied warranty. I accept no liability for any
// damage or loss of business that this software may cause.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef XGETOPT_H
#define XGETOPT_H
extern int optind, opterr;
extern char *optarg;
int getopt(int argc, char *argv[], char *optstring);
#endif //XGETOPT_H
// XGetopt.h Version 1.2
//
// Author: Hans Dietrich
// hdietrich2@hotmail.com
//
// This software is released into the public domain.
// You are free to use it in any way you like.
//
// This software is provided "as is" with no expressed
// or implied warranty. I accept no liability for any
// damage or loss of business that this software may cause.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef XGETOPT_H
#define XGETOPT_H
extern int optind, opterr;
extern char *optarg;
int getopt(int argc, char *argv[], char *optstring);
#endif //XGETOPT_H