Initial move from tk-libnfc-crapto1 to mfcuk

This commit is contained in:
zveriu 2010-03-30 18:11:31 +00:00
commit 9f75cc95cc
26 changed files with 4397 additions and 0 deletions

1
AUTHORS Normal file
View File

@ -0,0 +1 @@
Andrei Costin <zveriu@gmail.com>, http://andreicostin.com

339
COPYING Normal file
View File

@ -0,0 +1,339 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

0
ChangeLog Normal file
View File

339
LICENSE Normal file
View File

@ -0,0 +1,339 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

4
Makefile.am Normal file
View File

@ -0,0 +1,4 @@
SUBDIRS = src
#pkgconfigdir = $(libdir)/pkgconfig
#pkgconfig_DATA = libnfc.pc

0
NEWS Normal file
View File

45
README Normal file
View File

@ -0,0 +1,45 @@
README
======
PACKAGE
-------
MiFare Classic Universal toolKit (MFCUK)
TOOL(S)
-------
Mifare Classic DarkSide Key Recovery Tool (mfcuk_keyrecovery_darkside.c) (previously known as zv_mf_dark_side)
...
LICENSE
-------
GPL. See MFCUK_LICENSE for more information.
BIBLIOGRPAHY (no specific order)
---------------------------------
1. [WPMCC09] - "Wirelessly Pickpocketing a Mifare Classic Card"
2. [ESO08] - "2008-esorics.pdf"
3. [ESOSL08] - "2008-esorics-slides-updated.pdf"
4. [KON08] - "2008-koning-thesis.pdf"
5. [VER08] - "2008-verdult-thesis.pdf"
6. [PATMC] - "A Practical Attack on the MIFARE Classic.pdf"
7. [NCOURFIDSEC09] - "mifare_courtois_rfidsec09.pdf"
8. [MFCLTRB09] - "MifareClassicTroubles.ppt"
9. [TEEP08] - "p2008-teepe-classic_mistakes.pdf"
10. [RFIDSANJ] - "RFID Attacks_WCA_San_Jose.pdf"
11. [ROSS] - "rossum-mifare.pdf"
12. [PLOTZ08] - "SAR-PR-2008-21_.pdf"
13. [ROSSSASG] - "SASG35_Peter_v_Rossum_Mifare.pdf"
14. [DARK2009] - "THE DARK SIDE OF SECURITY BY OBSCURITY and Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
KUDOS and HATS-OFF to (no specific order) (for all the knowledge, time spent researching and all the things)
---------------------
- blapost@gmail.com - this man is a genius and a technical artist. crapto1 3.1 is the horse power of this tool. PS: you somehow resemble I.C.Wiener anonymous&smart hacker
- Roel and RConty @ libnfc/proxmark - these guys are true advisers, helpful. Thanks for providing a powerfull platform for NFC
- N.Curtois - also a crypto-artist in differential analysis. The 29bit prefix attack is pure genius of theoretical analysis.
- RU University Staff for working out different aspects and papers for Crypto1 analysis
- Nohl, Plotz, Evans - how the "F" did you get those slicers and microscopes :))?
- Milosch M et al. - for pushing the limits for open-source hardware (OpenPCD and OpenPICC)
- Jonathan Westhues - for giving the open-source community the: Proxmark schematics/sources and RFID knowledge
- Nethemba team - for first open-source/GPL nested authentication attack key recovery implementation in MFOC
- hat, schwa226, pgrahamm, marcus2608, phadom - for useful samples, advices, traces and all the things

19
TODO Normal file
View File

@ -0,0 +1,19 @@
TODO
====
PACKAGE
-------
MiFare Classic Universal toolKit (MFCUK)
TOOL(S)
-------
Mifare Classic DarkSide Key Recovery Tool (mfcuk_keyrecovery_darkside.c) (previously known as zv_mf_dark_side)
...
ITEMS
=====
0. Integrate with MFOC into MFCUK
1. Improve the performance (though not bad)
2. Optimize bits operations
3. Remove dead-code/commented block after testing
4. Proper error handling in some cases (not critical errors, but nice to have checks in place)

68
configure.ac Normal file
View File

@ -0,0 +1,68 @@
# -*- Autoconf -*-
# Process this file with autoconf to produce a configure script.
AC_PREREQ([2.64])
AC_INIT([mfcuk], [0.3], [zveriu@gmail.com])
AM_INIT_AUTOMAKE
AC_CONFIG_MACRO_DIR([m4])
AC_CONFIG_HEADERS([config.h])
m4_ifdef([AM_SILENT_RULES],[AM_SILENT_RULES([yes])])
# Checks for libnfc.
WITH_NFC=0
## Search libnfc with command line option (default prefix: auto)
LIBNFC_PREFIX="auto"
AC_ARG_WITH(libnfc,[--with-libnfc=DIR location of the libnfc],
[if test "$withval" != no; then
if test "$withval" != yes; then
LIBNFC_PREFIX=$withval
fi
fi])
if test x"$LIBNFC_PREFIX" != "xauto"; then
LIBNFC_CFLAGS="-L$LIBNFC_PREFIX/lib/ -I$LIBNFC_PREFIX/include/"
LIBNFC_LIBS="-lnfc"
fi
# Search using pkg-config
AC_PATH_PROG(PKG_CONFIG, pkg-config, [AC_MSG_WARN([pkg-config not found.])])
if test x"$WITH_NFC" = "x0"; then
if test x"$PKG_CONFIG" != "x"; then
PKG_CHECK_MODULES([LIBNFC], [libnfc], [WITH_NFC=1], [WITH_NFC=0])
fi
fi
CFLAGS="$CFLAGS $LIBNFC_CFLAGS"
AC_CHECK_HEADERS([nfc/nfc.h],[WITH_NFC=1], AC_MSG_ERROR([A version of libnfc greater than or equal to 1.3 is required]))
if test x"$WITH_NFC" = "x0"; then
AC_MSG_ERROR([A version of libnfc greater than or equal to 1.3 is required.])
fi
# Checks for programs.
AC_PROG_CC
# Checks for libraries.
AC_CHECK_LIB([nfc], [nfc_version])
# Checks for header files.
AC_CHECK_HEADERS([stdint.h stdlib.h string.h sys/time.h unistd.h])
# Checks for typedefs, structures, and compiler characteristics.
AC_HEADER_STDBOOL
AC_TYPE_SIZE_T
AC_TYPE_UINT16_T
AC_TYPE_UINT32_T
AC_TYPE_UINT64_T
AC_TYPE_UINT8_T
# Checks for library functions.
AC_FUNC_MALLOC
AC_FUNC_REALLOC
AC_CHECK_FUNCS([memset strchr])
AC_CONFIG_FILES([Makefile
src/Makefile])
AC_OUTPUT

7
src/Makefile.am Normal file
View File

@ -0,0 +1,7 @@
bin_PROGRAMS = mfcuk_keyrecovery_darkside
# set the include path found by configure
mfcuk_keyrecovery_darkside_SOURCES = mfcuk_keyrecovery_darkside.c mfcuk_mifare.c mfcuk_utils.c crapto1.c crypto1.c
mfcuk_keyrecovery_darkside_LDADD = -lnfc -lusb -lpcsclite
# dist_man_MANS = mfcuk_keyrecovery_darkside.1

BIN
src/bin/libnfc.dll Normal file

Binary file not shown.

BIN
src/bin/libnfc.lib Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

6
src/build_cygwin.sh Normal file
View File

@ -0,0 +1,6 @@
MAIN_FILE=mfcuk_keyrecovery_darkside
LIBNFC=libnfc
CFLAGS=`pkg-config --cflags ${LIBNFC}`
CFLAGS_LIBNFC=`pkg-config --cflags libnfc | cut -d ' ' -f 1`/${LIBNFC}
gcc ./${MAIN_FILE}.c ./mfcuk_mifare.c ./mfcuk_utils.c ./crapto1.c ./crypto1.c ./bin/libnfc.lib ${CFLAGS} ${CFLAGS_LIBNFC} -o ./bin/${MAIN_FILE}_cygwin.exe

487
src/crapto1.c Normal file
View File

@ -0,0 +1,487 @@
/* crapto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#if !defined LOWMEM && defined __GNUC__
static uint8_t filterlut[1 << 20];
static void __attribute__((constructor)) fill_lut()
{
uint32_t i;
for(i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
}
#define filter(x) (filterlut[(x) & 0xfffff])
#endif
static void quicksort(uint32_t* const start, uint32_t* const stop)
{
uint32_t *it = start + 1, *rit = stop;
if(it > rit)
return;
while(it < rit)
if(*it <= *start)
++it;
else if(*rit > *start)
--rit;
else
*it ^= (*it ^= *rit, *rit ^= *it);
if(*rit >= *start)
--rit;
if(rit != start)
*rit ^= (*rit ^= *start, *start ^= *rit);
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
static /*inline*/ uint32_t*
binsearch(uint32_t *start, uint32_t *stop)
{
uint32_t mid, val = *stop & 0xff000000;
while(start != stop)
if(start[mid = (stop - start) >> 1] > val)
stop = &start[mid];
else
start += mid + 1;
return start;
}
/** update_contribution
* helper, calculates the partial linear feedback contributions and puts in MSB
*/
static /*inline*/ void
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
{
uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff);
}
/** extend_table
* using a bit of the keystream extend the table of possible lfsr states
*/
static /*inline*/ void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
*/
static /*inline*/ void
extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
} else if(filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
*tbl-- = *(*end)--;
}
/** recover
* recursively narrow down the search space, 4 bits of keystream at a time
*/
static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in)
{
uint32_t *o, *e, i;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
return sl;
}
for(i = 0; i < 4 && rem--; i++) {
extend_table(o_head, &o_tail, (oks >>= 1) & 1,
LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, (eks >>= 1) & 1,
LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
if(e_head > e_tail)
return sl;
}
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
while(o_tail >= o_head && e_tail >= e_head)
if(((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
}
else if(*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
return sl;
}
/** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream
* additionally you can use the in parameter to specify the value
* that was fed into the lfsr at the time the keystream was generated
*/
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
{
struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist)
goto out;
statelist->odd = statelist->even = 0;
for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1))
*++odd_tail = i;
if(filter(i) == (eks & 1))
*++even_tail = i;
}
for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
out:
free(odd_head);
free(even_head);
return statelist;
}
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020};
static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states
* Variation mentioned in the paper. Somewhat optimized version
*/
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
{
struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16];
int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if(!sl)
return 0;
sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BIT(ks2, i ^ 24);
oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BIT(ks2, i ^ 24);
eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for(i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
*(tail = table) = i;
for(j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
if(tail < table)
continue;
for(j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for(j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for(; tail >= table; --tail) {
for(j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
if(filter(*tail) != oks[29 + j])
goto continue2;
}
for(j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
win ^= low;
for(j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if(filter(win) != eks[j])
goto continue2;
}
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:;
}
}
return statelist;
}
/** lfsr_rollback_bit
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint8_t ret;
s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23;
return ret;
}
/** lfsr_rollback_byte
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint8_t ret = 0;
for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
return ret;
}
/** lfsr_rollback_word
* Rollback the shift register in order to get previous states
*/
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
return ret;
}
/** nonce_distance
* x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
*/
static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to)
{
uint16_t x, i;
if(!dist) {
dist = malloc(2 << 16);
if(!dist)
return -1;
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
}
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
}
static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
/** lfsr_prefix_ks
*
* Is an exported helper function from the common prefix attack
* Described in the "dark side" paper. It returns an -1 terminated array
* of possible partial(21 bit) secret state.
* The required keystream(ks) needs to contain the keystream that was used to
* encrypt the NACK which is observed when varying only the 4 last bits of Nr
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
*/
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{
uint32_t c, entry, *candidates = malloc(4 << 21);
int i, size = (1 << 21) - 1;
if(!candidates)
return 0;
for(i = 0; i <= size; ++i)
candidates[i] = i;
for(c = 0; c < 8; ++c)
for(i = 0;i <= size; ++i) {
entry = candidates[i] ^ fastfwd[isodd][c];
if(filter(entry >> 1) != BIT(ks[c], isodd) ||
filter(entry) != BIT(ks[c], isodd + 2))
candidates[i--] = candidates[size--];
}
candidates[size + 1] = -1;
return candidates;
}
/** check_pfx_parity
* helper function which eliminates possible secret states using parity bits
*/
static struct Crypto1State*
check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State* sl)
{
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return sl + good;
}
/** lfsr_common_prefix
* Implentation of the common prefix attack.
* Requires the 29 bit constant prefix used as reader nonce (pfx)
* The reader response used (rr)
* The keystream used to encrypt the observed NACK's (ks)
* The parity bits (par)
* It returns a zero terminated list of possible cipher states after the
* tag nonce was fed in
*/
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) {
free(odd);
free(even);
free(statelist);
return 0;
}
for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = 0;
free(odd);
free(even);
return statelist;
}

92
src/crapto1.h Normal file
View File

@ -0,0 +1,92 @@
/* crapto1.h
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US$
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#ifndef CRAPTO1_INCLUDED
#define CRAPTO1_INCLUDED
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
struct Crypto1State {uint32_t odd, even;};
struct Crypto1State* crypto1_create(uint64_t);
void crypto1_destroy(struct Crypto1State*);
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
uint32_t prng_successor(uint32_t x, uint32_t n);
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\
int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
break;\
else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else
#define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804)
#define BIT(x, n) ((x) >> (n) & 1)
#define BEBIT(x, n) BIT(x, (n) ^ 24)
static /*inline*/ int parity(uint32_t x)
{
#if !defined __i386__ || !defined __GNUC__
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
return BIT(0x6996, x & 0xf);
#else
asm( "movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
return x;
#endif
}
static /*inline*/ int filter(uint32_t const x)
{
uint32_t f;
f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
#ifdef __cplusplus
}
#endif
#endif

93
src/crypto1.c Normal file
View File

@ -0,0 +1,93 @@
/* crypto1.c
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, US
Copyright (C) 2008-2008 bla <blapost@gmail.com>
*/
#include "crapto1.h"
#include <stdlib.h>
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
struct Crypto1State * crypto1_create(uint64_t key)
{
struct Crypto1State *s = malloc(sizeof(*s));
int i;
for(i = 47;s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
return s;
}
void crypto1_destroy(struct Crypto1State *state)
{
free(state);
}
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{
int i;
for(*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
}
}
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint32_t feedin;
uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted;
feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
return ret;
}
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint8_t i, ret = 0;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
return ret;
}
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{
uint32_t i, ret = 0;
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
return ret;
}
/* prng_successor
* helper used to obscure the keystream during authentication
*/
uint32_t prng_successor(uint32_t x, uint32_t n)
{
SWAPENDIAN(x);
while(n--)
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,125 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_keyrecovery_darkside.h
Description:
MFCUK DarkSide Key Recovery specific typedefs and defines
Contact, bug-reports:
http://andreicostin.com/
mailto:zveriu@gmail.com
License:
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_keyrecovery_darkside.h
* @brief
*/
/*
VERSION HISTORY
--------------------------------------------------------------------------------
| Number : 0.1
| dd/mm/yyyy : 23/11/2009
| Author : zveriu@gmail.com, http://andreicostin.com
| Description: Moved bulk of defines and things from "mfcuk_keyrecovery_darkside.c"
--------------------------------------------------------------------------------
*/
/*
LICENSE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _MFCUK_KEYRECOVERY_DARKSIDE_H_
#define _MFCUK_KEYRECOVERY_DARKSIDE_H_
// Define package and executable related info
#define PACKAGE_NAME "MFCUK - MiFare Classic Universal toolKit"
#define PACKAGE_VERSION "0.1"
#define BUILD_NAME "Mifare Classic DarkSide Key Recovery Tool"
#define BUILD_VERSION "0.3"
#define BUILD_AUTHOR "Andrei Costin, zveriu@gmail.com, http://andreicostin.com"
// Define return statuses
#define MFCUK_SUCCESS 0x0
#define MFCUK_OK_KEY_RECOVERED (MFCUK_SUCCESS+1)
#define MFCUK_FAIL_AUTH (MFCUK_OK_KEY_RECOVERED+1)
#define MFCUK_FAIL_CRAPTO (MFCUK_FAIL_AUTH+1)
#define MFCUK_FAIL_TAGTYPE_INVALID (MFCUK_FAIL_CRAPTO+1)
#define MFCUK_FAIL_KEYTYPE_INVALID (MFCUK_FAIL_TAGTYPE_INVALID+1)
#define MFCUK_FAIL_BLOCK_INVALID (MFCUK_FAIL_KEYTYPE_INVALID+1)
#define MFCUK_FAIL_SECTOR_INVALID (MFCUK_FAIL_BLOCK_INVALID+1)
#define MFCUK_FAIL_COMM (MFCUK_FAIL_SECTOR_INVALID+1)
#define MFCUK_FAIL_MEMORY (MFCUK_FAIL_COMM+1)
// There are 4 bytes in ACBITS, use each byte as below
#define ACTIONS_KEY_A 0 // Specifies the byte index where actions for key A are stored
#define RESULTS_KEY_A 1 // Specifies the byte index where results for key A are stored
#define ACTIONS_KEY_B 2 // Specifies the byte index where actions for key B are stored
#define RESULTS_KEY_B 3 // Specifies the byte index where results for key B are stored
// The action/result byte can contain any combination of these
#define ACTIONS_VERIFY 0x1 // Specifies whether the key should be first verified
#define ACTIONS_RECOVER 0x2 // Specifies whether the key should be recovered. If a key has verify action and the key was verified, RESULTS_ byte will indicate that and recovery will not take place
#define ACTIONS_KEYSET 0x4 // Specifies whether the key was set from command line rather that should be loaded from the eventual -i/-I dump
// Implementation specific, since we are not 100% sure we can fix the tag nonce
// Suppose from 2^32, only MAX 2^16 tag nonces will appear given current SLEEP_ values
#define MAX_TAG_NONCES 65536
// Maximum possible states allocated and returned by lsfr_common_prefix(). Used this value in the looping
#define MAX_COMMON_PREFIX_STATES (1<<20)
// 10 ms, though {WPMCC09} claims 30 us is enough
#define SLEEP_AT_FIELD_OFF 10
// 50 ms, seems pretty good constant, though if you don't like it - make it even 3.1415..., we don't care
#define SLEEP_AFTER_FIELD_ON 50
// Since the 29 bits of {Nr} are constant, darkside varies only "last" (0xFFFFFF1F) 3 bits, thus we have 8 possible parity bits arrays
#define MFCUK_DARKSIDE_MAX_LEVELS 8
#define MFCUK_DARKSIDE_START_NR 0xDEADBEEF
#define MFCUK_DARKSIDE_START_AR 0xFACECAFE
typedef struct tag_nonce_entry
{
uint32_t tagNonce; // Tag nonce we target for fixation
byte_t spoofFlag; // No spoofing until we have a successful auth with this tagNonce. Once we have, we want to spoof to get the encrypted 0x5 value
uint32_t num_of_appearances; // For statistics, how many times this tag nonce appeared for the given SLEEP_ values
// STAGE1 data for "dark side" and lsfr_common_prefix()
uint32_t spoofNrPfx; // PARAM: used as pfx, calculated from (spoofNrEnc & 0xFFFFFF1F). BUG: weird way to denote "first 29 prefix bits" in "dark side" paper. Perhaps I see the world different
uint32_t spoofNrEnc; // {Nr} value which we will be using to make the tag respond with 4 bits
uint32_t spoofArEnc; // PARAM: used as rr
uint8_t spoofParBitsEnc; // parity bits we are trying to guess for the first time
uint8_t spoofNackEnc; // store here the encrypted NACK returned first time we match the parity bits
uint8_t spoofKs; // store here the keystream ks used for encryptying spoofNackEnc, specifically spoofKs = spoofNackEnc ^ 0x5
// STAGE2 data for "dark side" and lsfr_common_prefix()
int current_out_of_8; // starting from -1 until we find parity for chosen spoofNrEnc,spoofArEnc
uint8_t parBitsCrntCombination[MFCUK_DARKSIDE_MAX_LEVELS]; // Loops over 32 combinations of the last 5 parity bits which generated the 4 bit NACK in STAGE1
uint32_t nrEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // the 29 bits constant prefix, varying only 3 bits, thus 8 possible values
uint32_t arEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // the same reader response as spoofArEnc; redundant but... :)
uint8_t ks[MFCUK_DARKSIDE_MAX_LEVELS]; // PARAM: used as ks, obtained as (ks[i] = nackEnc[i] ^ 0x5)
uint8_t nackEnc[MFCUK_DARKSIDE_MAX_LEVELS]; // store here the encrypted 4 bits values which tag responded
uint8_t parBits[MFCUK_DARKSIDE_MAX_LEVELS]; // store here the values based on spoofParBitsEnc, varying only last 5 bits
uint8_t parBitsArr[MFCUK_DARKSIDE_MAX_LEVELS][8]; // PARAM: used as par, contains value of parBits byte-bit values just splitted out one bit per byte thus second pair of braces [8]
} tag_nonce_entry_t;
#endif // _MFCUK_KEYRECOVERY_DARKSIDE_H_

560
src/mfcuk_mifare.c Normal file
View File

@ -0,0 +1,560 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_mifare.c
Description:
MFCUK defines and function implementation file extending
mainly libnfc's "mifare.h" interface/functionality.
Contact, bug-reports:
http://andreicostin.com/
mailto:zveriu@gmail.com
License:
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_mifare.c
* @brief
*/
/*
VERSION HISTORY
--------------------------------------------------------------------------------
| Number : 0.1
| dd/mm/yyyy : 23/11/2009
| Author : zveriu@gmail.com, http://andreicostin.com
| Description: Moved bulk of defines and functions from "mfcuk_keyrecovery_darkside.c"
--------------------------------------------------------------------------------
*/
/*
LICENSE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "mfcuk_mifare.h"
// Default keys used as a *BIG* mistake in many applications - especially System Integrators should pay attention!
byte_t mfcuk_default_keys[][MIFARE_CLASSIC_KEY_BYTELENGTH] =
{
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // Place-holder for current key to verify
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
{0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5},
{0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x4d, 0x3a, 0x99, 0xc3, 0x51, 0xdd},
{0x1a, 0x98, 0x2c, 0x7e, 0x45, 0x9a},
{0xd3, 0xf7, 0xd3, 0xf7, 0xd3, 0xf7},
{0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff},
};
int mfcuk_default_keys_num = sizeof(mfcuk_default_keys)/sizeof(mfcuk_default_keys[0]);
bool is_valid_block(byte_t bTagType, uint32_t uiBlock)
{
if ( IS_MIFARE_CLASSIC_1K(bTagType) && (uiBlock < MIFARE_CLASSIC_1K_MAX_BLOCKS) )
{
return true;
}
if ( IS_MIFARE_CLASSIC_4K(bTagType) && (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS) )
{
return true;
}
return false;
}
bool is_valid_sector(byte_t bTagType, uint32_t uiSector)
{
if ( IS_MIFARE_CLASSIC_1K(bTagType) && (uiSector < MIFARE_CLASSIC_1K_MAX_SECTORS) )
{
return true;
}
if ( IS_MIFARE_CLASSIC_4K(bTagType) && (uiSector < MIFARE_CLASSIC_4K_MAX_SECTORS) )
{
return true;
}
return false;
}
bool is_first_block(byte_t bTagType, uint32_t uiBlock)
{
if ( !is_valid_block(bTagType, uiBlock) )
{
return false;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1)
{
// For Mifare Classic 1K, it will enter always here
return ( (uiBlock) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) == 0 );
}
else
{
// This branch will enter only for Mifare Classic 4K big sectors
return ( (uiBlock) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) == 0 );
}
// Should not reach here, but... never know
return false;
}
bool is_trailer_block(byte_t bTagType, uint32_t uiBlock)
{
if ( !is_valid_block(bTagType, uiBlock) )
{
return false;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1)
{
// For Mifare Classic 1K, it will enter always here
return ( (uiBlock+1) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) == 0 );
}
else
{
// This branch will enter only for Mifare Classic 4K big sectors
return ( (uiBlock+1) % (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) == 0 );
}
// Should not reach here, but... never know
return false;
}
uint32_t get_first_block(byte_t bTagType, uint32_t uiBlock)
{
if ( !is_valid_block(bTagType, uiBlock) )
{
return MIFARE_CLASSIC_INVALID_BLOCK;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1)
{
// Integer divide, then integer multiply
return (uiBlock/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1;
}
else
{
uint32_t tmp = uiBlock - MIFARE_CLASSIC_4K_MAX_BLOCKS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2;
}
// Should not reach here, but... never know
return MIFARE_CLASSIC_INVALID_BLOCK;
}
uint32_t get_trailer_block(byte_t bTagType, uint32_t uiBlock)
{
if ( !is_valid_block(bTagType, uiBlock) )
{
return MIFARE_CLASSIC_INVALID_BLOCK;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1)
{
// Integer divide, then integer multiply
return (uiBlock/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1 + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1-1);
}
else
{
uint32_t tmp = uiBlock - MIFARE_CLASSIC_4K_MAX_BLOCKS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2 + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2-1);
}
// Should not reach here, but... never know
return MIFARE_CLASSIC_INVALID_BLOCK;
}
bool is_big_sector(byte_t bTagType, uint32_t uiSector)
{
if ( !is_valid_sector(bTagType, uiSector) )
{
return false;
}
if (uiSector >= MIFARE_CLASSIC_4K_MAX_SECTORS1)
{
return true;
}
return false;
}
uint32_t get_first_block_for_sector(byte_t bTagType, uint32_t uiSector)
{
if ( !is_valid_sector(bTagType, uiSector) )
{
return MIFARE_CLASSIC_INVALID_BLOCK;
}
if (uiSector < MIFARE_CLASSIC_4K_MAX_SECTORS1)
{
// For Mifare Classic 1K, it will enter always here
return (uiSector * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1);
}
else
{
// For Mifare Classic 4K big sectors it will enter always here
uint32_t tmp = uiSector - MIFARE_CLASSIC_4K_MAX_SECTORS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2);
}
// Should not reach here, but... never know
return MIFARE_CLASSIC_INVALID_BLOCK;
}
uint32_t get_trailer_block_for_sector(byte_t bTagType, uint32_t uiSector)
{
if ( !is_valid_sector(bTagType, uiSector) )
{
return MIFARE_CLASSIC_INVALID_BLOCK;
}
if (uiSector < MIFARE_CLASSIC_4K_MAX_SECTORS1)
{
// For Mifare Classic 1K, it will enter always here
return (uiSector * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1-1);
}
else
{
// For Mifare Classic 4K big sectors it will enter always here
uint32_t tmp = uiSector - MIFARE_CLASSIC_4K_MAX_SECTORS1;
return MIFARE_CLASSIC_4K_MAX_BLOCKS1 + (tmp * MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) + (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2-1);
}
// Should not reach here, but... never know
return MIFARE_CLASSIC_INVALID_BLOCK;
}
uint32_t get_sector_for_block(byte_t bTagType, uint32_t uiBlock)
{
if ( !is_valid_block(bTagType, uiBlock) )
{
return MIFARE_CLASSIC_INVALID_BLOCK;
}
// Test if we are in the small or big sectors
if (uiBlock < MIFARE_CLASSIC_4K_MAX_BLOCKS1)
{
// For Mifare Classic 1K, it will enter always here
return (uiBlock/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1);
}
else
{
uint32_t tmp = uiBlock - MIFARE_CLASSIC_4K_MAX_BLOCKS1;
return MIFARE_CLASSIC_4K_MAX_SECTORS1 + (tmp/MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2);
}
// Should not reach here, but... never know
return MIFARE_CLASSIC_INVALID_BLOCK;
}
bool is_first_sector(byte_t bTagType, uint32_t uiSector)
{
// TODO: write code
return false;
}
bool is_first_big_sector(byte_t bTagType, uint32_t uiSector)
{
// TODO: write code
return false;
}
bool is_first_small_sector(byte_t bTagType, uint32_t uiSector)
{
// TODO: write code
return false;
}
bool is_last_sector(byte_t bTagType, uint32_t uiSector)
{
// TODO: write code
return false;
}
bool is_last_big_sector(byte_t bTagType, uint32_t uiSector)
{
// TODO: write code
return false;
}
bool is_last_small_sector(byte_t bTagType, uint32_t uiSector)
{
// TODO: write code
return false;
}
// Test case function for checking correct functionality of the block/sector is_ ang get_ functions
void test_mifare_classic_blocks_sectors_functions(byte_t bTagType)
{
uint32_t i;
uint32_t max_blocks, max_sectors;
if ( IS_MIFARE_CLASSIC_1K(bTagType) )
{
printf("\nMIFARE CLASSIC 1K\n");
max_blocks = MIFARE_CLASSIC_1K_MAX_BLOCKS;
max_sectors = MIFARE_CLASSIC_1K_MAX_SECTORS;
}
else if ( IS_MIFARE_CLASSIC_4K(bTagType) )
{
printf("\nMIFARE CLASSIC 4K\n");
max_blocks = MIFARE_CLASSIC_4K_MAX_BLOCKS;
max_sectors = MIFARE_CLASSIC_4K_MAX_SECTORS;
}
else
{
return;
}
// Include one invalid block, that is why we add +1
for (i = 0; i<max_blocks+1; i++)
{
printf("BLOCK %d\n", i);
printf("\t is_valid_block: %c\n", (is_valid_block(bTagType, i)?'Y':'N') );
printf("\t is_first_block: %c\n", (is_first_block(bTagType, i)?'Y':'N') );
printf("\t is_trailer_block: %c\n", (is_trailer_block(bTagType, i)?'Y':'N') );
printf("\t get_first_block: %d\n", get_first_block(bTagType, i));
printf("\t get_trailer_block: %d\n", get_trailer_block(bTagType, i));
printf("\t get_sector_for_block: %d\n", get_sector_for_block(bTagType, i));
}
// Include one invalid sector, that is why we add +1
for (i = 0; i<max_sectors+1; i++)
{
printf("SECTOR %d\n", i);
printf("\t is_valid_sector: %c\n", (is_valid_sector(bTagType, i)?'Y':'N') );
printf("\t is_big_sector: %c\n", (is_big_sector(bTagType, i)?'Y':'N') );
printf("\t get_first_block_for_sector: %d\n", get_first_block_for_sector(bTagType, i) );
printf("\t get_trailer_block_for_sector: %d\n", get_trailer_block_for_sector(bTagType, i) );
}
}
bool mfcuk_save_tag_dump(char *filename, mifare_tag *tag)
{
FILE *fp;
size_t result;
fp = fopen(filename, "wb");
if (!fp)
{
return false;
}
// Expect to write 1 record
result = fwrite((void *) tag, sizeof(*tag), 1, fp);
// If not written exactly 1 record, something is wrong
if (result != 1)
{
fclose(fp);
return false;
}
fclose(fp);
return true;
}
bool mfcuk_save_tag_dump_ext(char *filename, mifare_tag_ext *tag_ext)
{
FILE *fp;
size_t result;
fp = fopen(filename, "wb");
if (!fp)
{
return false;
}
// Expect to write 1 record
result = fwrite((void *) tag_ext, sizeof(*tag_ext), 1, fp);
// If not written exactly 1 record, something is wrong
if (result != 1)
{
fclose(fp);
return false;
}
fclose(fp);
return true;
}
bool mfcuk_load_tag_dump(char *filename, mifare_tag *tag)
{
FILE *fp;
size_t result;
fp = fopen(filename, "rb");
if (!fp)
{
return false;
}
// Expect to read 1 record
result = fread((void *) tag, sizeof(*tag), 1, fp);
// If not read exactly 1 record, something is wrong
if (result != 1)
{
fclose(fp);
return false;
}
fclose(fp);
return true;
}
bool mfcuk_load_tag_dump_ext(char *filename, mifare_tag_ext *tag_ext)
{
FILE *fp;
size_t result;
fp = fopen(filename, "rb");
if (!fp)
{
return false;
}
// Expect to read 1 record
result = fread((void *) tag_ext, sizeof(*tag_ext), 1, fp);
// If not read exactly 1 record, something is wrong
if (result != sizeof(*tag_ext))
{
fclose(fp);
return false;
}
fclose(fp);
return true;
}
void print_mifare_tag_keys(const char *title, mifare_tag *tag)
{
uint32_t i, max_blocks, trailer_block;
byte_t bTagType;
mifare_block_trailer *ptr_trailer = NULL;
if (!tag)
{
return;
}
bTagType = tag->amb->mbm.btUnknown;
if ( !IS_MIFARE_CLASSIC_1K(bTagType) && !IS_MIFARE_CLASSIC_4K(bTagType) )
{
return;
}
printf("%s - UID %02x %02x %02x %02x - TYPE 0x%02x (%s)\n",
title, tag->amb->mbm.abtUID[0], tag->amb->mbm.abtUID[1], tag->amb->mbm.abtUID[2], tag->amb->mbm.abtUID[3], bTagType,
(IS_MIFARE_CLASSIC_1K(bTagType)?(MIFARE_CLASSIC_1K_NAME):(IS_MIFARE_CLASSIC_4K(bTagType)?(MIFARE_CLASSIC_4K_NAME):(MIFARE_CLASSIC_UNKN_NAME)))
);
printf("-------------------------------------------------------\n");
printf("Sector\t| Key A\t| AC bits\t| Key B\n");
printf("-------------------------------------------------------\n");
if ( IS_MIFARE_CLASSIC_1K(tag->amb->mbm.btUnknown) )
{
max_blocks = MIFARE_CLASSIC_1K_MAX_BLOCKS;
}
else
{
max_blocks = MIFARE_CLASSIC_4K_MAX_BLOCKS;
}
for (i=0; i<max_blocks; i++)
{
trailer_block = get_trailer_block(bTagType, i);
if ( !is_valid_block(bTagType, trailer_block) )
{
break;
}
ptr_trailer = (mifare_block_trailer *) ((char *)tag + (trailer_block * MIFARE_CLASSIC_BYTES_PER_BLOCK) );
printf("%d\t| %02x%02x%02x%02x%02x%02x\t| %02x%02x%02x%02x\t| %02x%02x%02x%02x%02x%02x\n",
get_sector_for_block(bTagType, trailer_block),
ptr_trailer->abtKeyA[0], ptr_trailer->abtKeyA[1], ptr_trailer->abtKeyA[2],
ptr_trailer->abtKeyA[3], ptr_trailer->abtKeyA[4], ptr_trailer->abtKeyA[5],
ptr_trailer->abtAccessBits[0], ptr_trailer->abtAccessBits[1], ptr_trailer->abtAccessBits[2], ptr_trailer->abtAccessBits[3],
ptr_trailer->abtKeyB[0], ptr_trailer->abtKeyB[1], ptr_trailer->abtKeyB[2],
ptr_trailer->abtKeyB[3], ptr_trailer->abtKeyB[4], ptr_trailer->abtKeyB[5]
);
// Go beyond current trailer block, i.e. go to next sector
i = trailer_block;
}
printf("\n");
return;
}
bool mfcuk_key_uint64_to_arr(const uint64_t *ui64Key, byte_t *arr6Key)
{
int i;
if ( !ui64Key || !arr6Key )
{
return false;
}
for (i = 0; i<MIFARE_CLASSIC_KEY_BYTELENGTH; i++)
{
arr6Key[i] = (byte_t) (((*ui64Key) >> 8*(MIFARE_CLASSIC_KEY_BYTELENGTH - i - 1)) & 0xFF);
}
return true;
}
bool mfcuk_key_arr_to_uint64(const byte_t *arr6Key, uint64_t *ui64Key)
{
uint64_t key = 0;
int i;
if ( !ui64Key || !arr6Key )
{
return false;
}
for (i = 0; i<MIFARE_CLASSIC_KEY_BYTELENGTH; i++, key <<= 8)
{
key |= arr6Key[i];
}
key >>= 8;
*ui64Key = key;
return true;
}

140
src/mfcuk_mifare.h Normal file
View File

@ -0,0 +1,140 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_mifare.h
Description:
MFCUK defines and function prototypes header file extending
mainly libnfc's "mifare.h" interface/functionality.
Contact, bug-reports:
http://andreicostin.com/
mailto:zveriu@gmail.com
License:
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_mifare.h
* @brief
*/
/*
VERSION HISTORY
--------------------------------------------------------------------------------
| Number : 0.1
| dd/mm/yyyy : 23/11/2009
| Author : zveriu@gmail.com, http://andreicostin.com
| Description: Moved bulk of defines and functions from "mfcuk_keyrecovery_darkside.c"
--------------------------------------------------------------------------------
*/
/*
LICENSE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _MFCUK_MIFARE_H_
#define _MFCUK_MIFARE_H_
#include <stdio.h>
#include <stdlib.h>
#include <nfc/nfc.h>
#include <nfc/mifaretag.h>
#define MIFARE_CLASSIC_UID_BYTELENGTH 4 // Length of a Mifare Classic UID in bytes
#define MIFARE_CLASSIC_KEY_BYTELENGTH 6 // Length of a Mifare Classic key in bytes
#define MIFARE_CLASSIC_1K_NAME "MC1K"
#define MIFARE_CLASSIC_4K_NAME "MC4K"
#define MIFARE_CLASSIC_UNKN_NAME "UNKN"
#define MIFARE_CLASSIC_1K 0x08 // MF1ICS50 Functional Specifications - 0x08
#define MIFARE_CLASSIC_4K 0x18 // MF1ICS70 Functional Specifications - 0x18
#define MIFARE_DESFIRE 0x20 // XXXXXXXX Functional Specifications - 0x20
#define MIFARE_CLASSIC_1K_RATB 0x88 // Infineon Licensed Mifare - 0x88 (thanks JPS)
#define IS_MIFARE_CLASSIC_1K(ats_sak) ( ((ats_sak) == MIFARE_CLASSIC_1K) || ((ats_sak) == MIFARE_CLASSIC_1K_RATB) )
#define IS_MIFARE_CLASSIC_4K(ats_sak) ( ((ats_sak) == MIFARE_CLASSIC_4K) )
#define IS_MIFARE_DESFIRE(ats_sak) ( ((ats_sak) == MIFARE_DESFIRE) )
#define MIFARE_CLASSIC_BYTES_PER_BLOCK 16 // Common for Mifare Classic 1K and Mifare Classic 4K
#define MIFARE_CLASSIC_INVALID_BLOCK 0xFFFFFFFF
#define MIFARE_CLASSIC_1K_MAX_SECTORS 16
#define MIFARE_CLASSIC_1K_BLOCKS_PER_SECTOR 4
#define MIFARE_CLASSIC_1K_MAX_BLOCKS ( (MIFARE_CLASSIC_1K_MAX_SECTORS) * (MIFARE_CLASSIC_1K_BLOCKS_PER_SECTOR) )
#define MIFARE_CLASSIC_4K_MAX_SECTORS1 32
#define MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1 MIFARE_CLASSIC_1K_BLOCKS_PER_SECTOR // Possibly NXP made it for Mifare 1K backward compatibility
#define MIFARE_CLASSIC_4K_MAX_BLOCKS1 ( (MIFARE_CLASSIC_4K_MAX_SECTORS1) * (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR1) )
#define MIFARE_CLASSIC_4K_MAX_SECTORS2 8
#define MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2 16
#define MIFARE_CLASSIC_4K_MAX_BLOCKS2 ( (MIFARE_CLASSIC_4K_MAX_SECTORS2) * (MIFARE_CLASSIC_4K_BLOCKS_PER_SECTOR2) )
#define MIFARE_CLASSIC_4K_MAX_SECTORS ( (MIFARE_CLASSIC_4K_MAX_SECTORS1) + (MIFARE_CLASSIC_4K_MAX_SECTORS2) )
#define MIFARE_CLASSIC_4K_MAX_BLOCKS ( (MIFARE_CLASSIC_4K_MAX_BLOCKS1) + (MIFARE_CLASSIC_4K_MAX_BLOCKS2) )
#define MFCUK_EXTENDED_DESCRIPTION_LENGTH 128
// Define an extended type of dump, basically a wrapper dump around basic tag dump
typedef struct {
uint32_t uid; // looks redundant, but it is easier to use dmp.uid instead of dmp.amb.mbm.abtUID[0]...[3]
byte_t type; // ATS/SAK from ti.tia.btSak, example 0x08h for Mifare 1K, 0x18h for Mifare 4K
char datetime[14]; // non-zero-terminated date-time of dump in format YYYYMMDDH24MISS, example 20091114231541 - 14 Nov 2009, 11:15:41 PM
char description[MFCUK_EXTENDED_DESCRIPTION_LENGTH]; // a description of the tag dump, example "RATB_DUMP_BEFORE_PAY"
mifare_tag tag_basic;
} mifare_tag_ext;
// Define type of keys (A or B) in NXP notation
typedef enum {
keyA = 0x60,
keyB = 0x61,
} mifare_key_type;
// Default keys used as a *BIG* mistake in many applications - especially System Integrators should pay attention!
extern byte_t mfcuk_default_keys[][MIFARE_CLASSIC_KEY_BYTELENGTH];
extern int mfcuk_default_keys_num;
bool is_valid_block(byte_t bTagType, uint32_t uiBlock);
bool is_valid_sector(byte_t bTagType, uint32_t uiSector);
bool is_first_block(byte_t bTagType, uint32_t uiBlock);
bool is_trailer_block(byte_t bTagType, uint32_t uiBlock);
uint32_t get_first_block(byte_t bTagType, uint32_t uiBlock);
uint32_t get_trailer_block(byte_t bTagType, uint32_t uiBlock);
bool is_big_sector(byte_t bTagType, uint32_t uiSector);
uint32_t get_first_block_for_sector(byte_t bTagType, uint32_t uiSector);
uint32_t get_trailer_block_for_sector(byte_t bTagType, uint32_t uiSector);
uint32_t get_sector_for_block(byte_t bTagType, uint32_t uiBlock);
bool is_first_sector(byte_t bTagType, uint32_t uiSector);
bool is_first_big_sector(byte_t bTagType, uint32_t uiSector);
bool is_first_small_sector(byte_t bTagType, uint32_t uiSector);
bool is_last_sector(byte_t bTagType, uint32_t uiSector);
bool is_last_big_sector(byte_t bTagType, uint32_t uiSector);
bool is_last_small_sector(byte_t bTagType, uint32_t uiSector);
void test_mifare_classic_blocks_sectors_functions(byte_t bTagType);
bool mfcuk_save_tag_dump(char *filename, mifare_tag *tag);
bool mfcuk_save_tag_dump_ext(char *filename, mifare_tag_ext *tag_ext);
bool mfcuk_load_tag_dump(char *filename, mifare_tag *tag);
bool mfcuk_load_tag_dump_ext(char *filename, mifare_tag_ext *tag_ext);
void print_mifare_tag_keys(const char *title, mifare_tag *tag);
bool mfcuk_key_uint64_to_arr(const uint64_t *ui64Key, byte_t *arr6Key);
bool mfcuk_key_arr_to_uint64(const byte_t *arr6Key, uint64_t *ui64Key);
#endif // _MFCUK_MIFARE_H_

81
src/mfcuk_utils.c Normal file
View File

@ -0,0 +1,81 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_utils.c
Description:
MFCUK common utility functions implementation.
License:
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_utils.c
* @brief
*/
/*
VERSION HISTORY
--------------------------------------------------------------------------------
| Number : 0.1
| dd/mm/yyyy : 23/11/2009
| Author : zveriu@gmail.com, http://andreicostin.com
| Description: Moved bulk of defines and prototypes from "mfcuk_keyrecovery_darkside.c"
--------------------------------------------------------------------------------
*/
/*
LICENSE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "mfcuk_utils.h"
#ifdef __STDC__
struct timeval global_timeout;
#endif
/*
http://www.velocityreviews.com/forums/t451319-advice-required-on-my-ascii-to-hex-conversion-c.html
Basically, converting a hex digit into a hex nibble (4 binary digits) algorithm looks like;
char xdigit; // hex digit to convert [0-9A-Fa-f]
xdigit = tolower(xdigit); // make it lowercase [0-9a-f]
xdigit -= '0'; // if it was a [0-9] digit, it's the value now
if(xdigit > 9) // if it was a [a-f] digit, compensate for that
xdigit = xdigit + '0' - 'a';
The below code is just an optimization of the algorithm. Maxim Yegorushkin
*/
/*inline*/
int is_hex(char c)
{
return (c >= '0' && c <= '9') || ((c | 0x20) >= 'a' && (c | 0x20) <= 'f');
}
/*inline*/
unsigned char hex2bin(unsigned char h, unsigned char l)
{
h |= 0x20; // to lower
h -= 0x30;
h -= -(h > 9) & 0x27;
l |= 0x20;
l -= 0x30;
l -= -(l > 9) & 0x27;
return h << 4 | l;
}

104
src/mfcuk_utils.h Normal file
View File

@ -0,0 +1,104 @@
/*
Package:
MiFare Classic Universal toolKit (MFCUK)
Package version:
0.1
Filename:
mfcuk_utils.h
Description:
MFCUK common utility functions prototypes.
License:
GPL2 (see below), Copyright (C) 2009, Andrei Costin
* @file mfcuk_utils.h/
* @brief
*/
/*
VERSION HISTORY
--------------------------------------------------------------------------------
| Number : 0.1
| dd/mm/yyyy : 23/11/2009
| Author : zveriu@gmail.com, http://andreicostin.com
| Description: Moved bulk of defines and prototypes from "mfcuk_keyrecovery_darkside.c"
--------------------------------------------------------------------------------
*/
/*
LICENSE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _MFCUK_UTILS_H_
#define _MFCUK_UTILS_H_
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef WIN32
#define NOMINMAX
#include "windows.h"
#include "xgetopt.h"
#elif __STDC__
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#endif
// "Portable" sleep(miliseconds)
#ifdef WIN32
#define sleep(x) Sleep(x)
#elif __STDC__
extern struct timeval global_timeout;
#define sleep(x) { global_timeout.tv_usec = 1000 * (x); select(0,NULL,NULL,NULL,&global_timeout); }
#endif
// "Portable" clear_screen() - NOTE: system performance penalty introduced
#ifdef WIN32
#define clear_screen() system("cls")
#elif __STDC__
#define clear_screen() system("sh -c clear")
#endif
/**
* @fn int is_hex(char c)
* @brief Checks if an ASCII character is a valid hexadecimal base digit
* @param c The ASCII character to be checked
* @return Returns true (non-zero) or false (zero)
*
* Checks if an ASCII character is a valid hexadecimal base digit.
* Used for hex2bin() functionality.
*/
int is_hex(char c);
/**
* @fn unsigned char hex2bin(unsigned char h, unsigned char l)
* @brief Converts from two nibbles (4 bits) into the corresponding byte
* @param h The HIGH (left-most in human reading) nibble of two-char hex representation of a byte
* @param l The LOW (right-most in human reading) nibble of two-char hex representation of a byte
* @return Returns the byte which is formed from the two-char hex representation of it
*
* Converts from two nibbles (4 bits) into the corresponding byte.
* Uses the algorithm and implementation from here:
* http://www.velocityreviews.com/forums/t451319-advice-required-on-my-ascii-to-hex-conversion-c.html
*/
unsigned char hex2bin(unsigned char h, unsigned char l);
#endif // _MFCUK_UTILS_H_

223
src/xgetopt.c Normal file
View File

@ -0,0 +1,223 @@
// XGetopt.cpp Version 1.2
//
// Author: Hans Dietrich
// hdietrich2@hotmail.com
//
// Description:
// XGetopt.cpp implements getopt(), a function to parse command lines.
//
// History
// Version 1.2 - 2003 May 17
// - Added Unicode support
//
// Version 1.1 - 2002 March 10
// - Added example to XGetopt.cpp module header
//
// This software is released into the public domain.
// You are free to use it in any way you like.
//
// This software is provided "as is" with no expressed
// or implied warranty. I accept no liability for any
// damage or loss of business that this software may cause.
//
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// if you are using precompiled headers then include this line:
//#include "stdafx.h"
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// if you are not using precompiled headers then include these lines:
//#include
//#include
//#include
///////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <string.h>
#include "xgetopt.h"
///////////////////////////////////////////////////////////////////////////////
//
// X G e t o p t . c p p
//
//
// NAME
// getopt -- parse command line options
//
// SYNOPSIS
// int getopt(int argc, char *argv[], char *optstring)
//
// extern char *optarg;
// extern int optind;
//
// DESCRIPTION
// The getopt() function parses the command line arguments. Its
// arguments argc and argv are the argument count and array as
// passed into the application on program invocation. In the case
// of Visual C++ programs, argc and argv are available via the
// variables __argc and __argv (double underscores), respectively.
// getopt returns the next option letter in argv that matches a
// letter in optstring. (Note: Unicode programs should use
// __targv instead of __argv. Also, all character and string
// literals should be enclosed in _T( ) ).
//
// optstring is a string of recognized option letters; if a letter
// is followed by a colon, the option is expected to have an argument
// that may or may not be separated from it by white space. optarg
// is set to point to the start of the option argument on return from
// getopt.
//
// Option letters may be combined, e.g., "-ab" is equivalent to
// "-a -b". Option letters are case sensitive.
//
// getopt places in the external variable optind the argv index
// of the next argument to be processed. optind is initialized
// to 0 before the first call to getopt.
//
// When all options have been processed (i.e., up to the first
// non-option argument), getopt returns EOF, optarg will point
// to the argument, and optind will be set to the argv index of
// the argument. If there are no non-option arguments, optarg
// will be set to NULL.
//
// The special option "--" may be used to delimit the end of the
// options; EOF will be returned, and "--" (and everything after it)
// will be skipped.
//
// RETURN VALUE
// For option letters contained in the string optstring, getopt
// will return the option letter. getopt returns a question mark (?)
// when it encounters an option letter not included in optstring.
// EOF is returned when processing is finished.
//
// BUGS
// 1) Long options are not supported.
// 2) The GNU double-colon extension is not supported.
// 3) The environment variable POSIXLY_CORRECT is not supported.
// 4) The + syntax is not supported.
// 5) The automatic permutation of arguments is not supported.
// 6) This implementation of getopt() returns EOF if an error is
// encountered, instead of -1 as the latest standard requires.
//
// EXAMPLE
// BOOL CMyApp::ProcessCommandLine(int argc, char *argv[])
// {
// int c;
//
// while ((c = getopt(argc, argv, _T("aBn:"))) != EOF)
// {
// switch (c)
// {
// case _T('a'):
// TRACE(_T("option a\n"));
// //
// // set some flag here
// //
// break;
//
// case _T('B'):
// TRACE( _T("option B\n"));
// //
// // set some other flag here
// //
// break;
//
// case _T('n'):
// TRACE(_T("option n: value=%d\n"), atoi(optarg));
// //
// // do something with value here
// //
// break;
//
// case _T('?'):
// TRACE(_T("ERROR: illegal option %s\n"), argv[optind-1]);
// return FALSE;
// break;
//
// default:
// TRACE(_T("WARNING: no handler for option %c\n"), c);
// return FALSE;
// break;
// }
// }
// //
// // check for non-option args here
// //
// return TRUE;
// }
//
///////////////////////////////////////////////////////////////////////////////
char *optarg; // global argument pointer
int optind = 0; // global argv index
int getopt(int argc, char *argv[], char *optstring)
{
char c = 0;
char *cp = NULL;
static char *next = NULL;
if (optind == 0)
next = NULL;
optarg = NULL;
if (next == NULL || *next == '\0')
{
if (optind == 0)
optind++;
if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0')
{
optarg = NULL;
if (optind < argc)
optarg = argv[optind];
return EOF;
}
if (strcmp(argv[optind], "--") == 0)
{
optind++;
optarg = NULL;
if (optind < argc)
optarg = argv[optind];
return EOF;
}
next = argv[optind];
next++; // skip past -
optind++;
}
c = *next++;
cp = strchr(optstring, c);
if (cp == NULL || c == ':')
return '?';
cp++;
if (*cp == ':')
{
if (*next != '\0')
{
optarg = next;
next = NULL;
}
else if (optind < argc)
{
optarg = argv[optind];
optind++;
}
else
{
return '?';
}
}
return c;
}

23
src/xgetopt.h Normal file
View File

@ -0,0 +1,23 @@
// XGetopt.h Version 1.2
//
// Author: Hans Dietrich
// hdietrich2@hotmail.com
//
// This software is released into the public domain.
// You are free to use it in any way you like.
//
// This software is provided "as is" with no expressed
// or implied warranty. I accept no liability for any
// damage or loss of business that this software may cause.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef XGETOPT_H
#define XGETOPT_H
extern int optind, opterr;
extern char *optarg;
int getopt(int argc, char *argv[], char *optstring);
#endif //XGETOPT_H